Olver, Peter J.; Pohjanpelto, Juha Persistence of freeness for Lie pseudogroup actions. (English) Zbl 1260.58010 Ark. Mat. 50, No. 1, 165-182 (2012). The concept of action is one of the useful tools in algebraic and differential topology. In this paper, the authors deal with the action of a Lie pseudogroup on a smooth manifold and its moving frames and invariants. More precisely, the action of a Lie pseudogroup \(G\) on a smooth manifold \(M\) induces a prolonged pseudogroup action on the jet spaces of submanifolds of \(M\). Using this fact, the authors prove that both the local and global freeness of the action of \(G\) on the jet space \(J^n\) persist under prolongation of the pseudogroup action at the jet order \(n\). Reviewer: M. Habil Gürsoy (Malatya) Cited in 4 Documents MSC: 58H05 Pseudogroups and differentiable groupoids 22A22 Topological groupoids (including differentiable and Lie groupoids) 58A20 Jets in global analysis Keywords:Lie pseudogroup; action; moving frame PDFBibTeX XMLCite \textit{P. J. Olver} and \textit{J. Pohjanpelto}, Ark. Mat. 50, No. 1, 165--182 (2012; Zbl 1260.58010) Full Text: DOI arXiv References: [1] Cartan, É., La théorie des groupes finis et continus et la géométrie différentielle traitées par la méthode du repère mobile, Gauthier, Paris, 1937. [2] Cartan, É., Sur la structure des groupes infinis de transformations, in Oeuvres Complètes, Part. II, pp. 571–714, Gauthier, Paris, 1953. [3] Cheh, J., Olver, P. J. and Pohjanpelto, J., Maurer–Cartan equations for Lie symmetry pseudo-groups of differential equations, J. Math. Phys. 46 (2005), 023504. · Zbl 1076.37054 · doi:10.1063/1.1836015 [4] Cheh, J., Olver, P. J. and Pohjanpelto, J., Algorithms for differential invariants of symmetry groups of differential equations, Found. Comput. Math. 8 (2008), 501–532. · Zbl 1183.58016 · doi:10.1007/s10208-005-0206-x [5] Ehresmann, C., Introduction à la théorie des structures infinitésimales et des pseudo-groupes de Lie, in Géometrie différentielle, pp. 97–110, Colloq. Inter. du Centre Nat. de la Rech. Sci., Strasbourg, 1953. [6] Fels, M. and Olver, P. J., Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math. 55 (1999), 127–208. · Zbl 0937.53013 · doi:10.1023/A:1006195823000 [7] Green, M. L., The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces, Duke Math. J. 45 (1978), 735–779. · Zbl 0414.53039 · doi:10.1215/S0012-7094-78-04535-0 [8] Griffiths, P., On Cartan’s method of Lie groups and moving frames as applied to existence and uniqueness questions in differential geometry, Duke Math. J. 41 (1974), 775–814. · Zbl 0294.53034 · doi:10.1215/S0012-7094-74-04180-5 [9] Guillemin, V. and Sternberg, S., Deformation Theory of Pseudogroup Structures, Mem. Amer. Math. Soc. 64, Amer. Math. Soc., Providence, RI, 1966. · Zbl 0169.53001 [10] Itskov, V., Olver, P. J. and Valiquette, F., Lie completion of pseudo-groups, to appear in Transform. Groups. · Zbl 1257.22004 [11] Jensen, G. R., Higher Order Contact of Submanifolds of Homogeneous Spaces, Lecture Notes in Math. 610, Springer, Berlin–Heidellberg, 1977. · Zbl 0356.53005 [12] Johnson, H. H., Classical differential invariants and applications to partial differential equations, Math. Ann. 148 (1962), 308–329. · Zbl 0171.06301 · doi:10.1007/BF01451139 [13] Kogan, I. A. and Olver, P. J., Invariant Euler–Lagrange equations and the invariant variational bicomplex, Acta Appl. Math. 76 (2003), 137–193. · Zbl 1034.53015 · doi:10.1023/A:1022993616247 [14] Kumpera, A., Invariants différentiels d’un pseudogroupe de Lie, J. Differential Geom. 10 (1975), 289–416. · Zbl 0346.58012 [15] Kuranishi, M., On the local theory of continuous infinite pseudo groups I, Nagoya Math. J. 15 (1959), 225–260. · Zbl 0212.56501 [16] Kuranishi, M., On the local theory of continuous infinite pseudo groups II, Nagoya Math. J. 19 (1961), 55–91. · Zbl 0212.56501 [17] Lie, S., Über unendlichen kontinuierliche Gruppen, Christ. Forh. Aar. 8 (1883), 1–47; also in Gesammelte Abhandlungen, vol. 5, pp. 314–360, B.G. Teubner, Leipzig, 1924. [18] Mackenzie, K., General Theory of Lie Groupoids and Lie Algebroids, London Math. Soc. Lecture Notes 213, Cambridge Univ. Press, Cambridge, 2005. · Zbl 1078.58011 [19] Morozov, O. I., Structure of symmetry groups via Cartan’s method: survey of four approaches, SIGMA Symmetry Integrability Geom. Methods Appl. 1 (2005), 006. · Zbl 1092.58017 [20] Olver, P. J., Symmetry groups and group invariant solutions of partial differential equations, J. Differential Geom. 14 (1979), 497–542. · Zbl 0437.58024 [21] Olver, P. J., Applications of Lie Groups to Differential Equations, 2nd ed., Graduate Texts in Mathematics 107, Springer, New York, 1993. · Zbl 0785.58003 [22] Olver, P. J., Equivalence, Invariants, and Symmetry, Cambridge University Press, Cambridge, 1995. [23] Olver, P. J., A survey of moving frames, in Computer Algebra and Geometric Algebra with Applications, Lecture Notes in Computer Science 3519, pp. 105–138, Springer, New York, 2005. · Zbl 1078.53507 [24] Olver, P. J. and Pohjanpelto, J., Regularity of pseudogroup orbits, in Symmetry and Perturbation Theory, pp. 244–254, World Scientific, Singapore, 2005. · Zbl 1136.58304 [25] Olver, P. J. and Pohjanpelto, J., Maurer–Cartan forms and the structure of Lie pseudo-groups, Selecta Math. 11 (2005), 99–126. · Zbl 1091.58014 · doi:10.1007/s00029-005-0008-7 [26] Olver, P. J. and Pohjanpelto, J., Moving frames for Lie pseudo-groups, Canad. J. Math. 60 (2008), 1336–1386. · Zbl 1160.53006 · doi:10.4153/CJM-2008-057-0 [27] Olver, P. J. and Pohjanpelto, J., Differential invariant algebras of Lie pseudo-groups, Adv. Math. 222 (2009), 1746–1792. · Zbl 1194.58018 · doi:10.1016/j.aim.2009.06.016 [28] Pohjanpelto, J., Reduction of exterior differential systems with infinite-dimensional symmetry groups, BIT 48 (2008), 337–355. · Zbl 1147.58003 · doi:10.1007/s10543-008-0177-9 [29] Shemyakova, E. and Mansfield, E. L., Moving frames for Laplace invariants, in ISSAC 2008, pp. 295–302, ACM, New York, 2008. [30] Singer, I. M. and Sternberg, S., The infinite groups of Lie and Cartan, Part I (The transitive groups), J. Anal. Math. 15 (1965), 1–114. · Zbl 0277.58008 · doi:10.1007/BF02787690 [31] Terng, C. L., Natural vector bundles and natural differential operators, Amer. J. Math. 100 (1978), 775–828. · Zbl 0422.58001 · doi:10.2307/2373910 [32] Varadarajan, V. S., Lie Groups, Lie Algebras, and Their Representations, Springer, New York, 1984. · Zbl 0955.22500 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.