Martingale Orlicz-Hardy spaces. (English) Zbl 1260.60082

Suppose \(\left( \Omega, \mathcal{F}, P \right)\) is a probability space. Let \(\mathcal{M}\) be the set of all martingales \(f=\{f_n\}_{n\geqslant 0}\) relative to a non-decreasing sequence of \(\sigma\)-subalgebras \(\{\mathcal{F}_n\}_{n\geqslant 0}\) generating the \(\sigma\)-algebra \(\mathcal{F}\). For a martingale \(f \in \mathcal{M}\), the authors define the maximal function \(f^*\), the quadratic variation \(S(f)\), and the conditional quadratic variation \(s(f)\). Let \(L_\Phi\) be the Orlicz space associated with a non-convex Orlicz function \(\Phi\) satisfying certain additional conditions. Then, the authors use \(f^*\), \(S(f)\) and \(s(f)\) to define five martingale Hardy-Orlicz subspaces of \(\mathcal{M}\). Their results include an atomic decomposition for some of these Hardy-Orlicz spaces. In particular, if the sequence of \(\sigma\)-algebras \(\{\mathcal{F}_n\}_{n\geqslant 0}\) is a regular stochastic basis, then all these five spaces coincide, and so one gets an atomic decomposition for all five spaces. As another application of the atomic decomposition, the authors show that the dual of one of these spaces is a generalized martingale Campanato space \(\mathcal{L}_{2,\phi}\) with a certain relation between functions \(\Phi\) and \(\phi\). Finally, a John-Nirenberg-type inequality for \(\mathcal{L}_{2,\phi}\) is proved under the assumption that \(\{\mathcal{F}_n\}_{n\geq 0}\) is regular.


60G46 Martingales and classical analysis
42B30 \(H^p\)-spaces
42B35 Function spaces arising in harmonic analysis
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
Full Text: DOI


[1] Burkholder, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 pp 249– (1970) · Zbl 0223.60021 · doi:10.1007/BF02394573
[2] Kikuchi, Boundedness and convergence of martingales in rearrangement-invariant function spaces, Arch. Math. (Basel) 75 (4) pp 312– (2000) · Zbl 0982.60030 · doi:10.1007/s000130050509
[3] Neveu, Discrete-parameter Martingales.Translated from the French by T. P. Speed. Revised edition. North-Holland Mathematical Vol. 10 (1975)
[4] Peetre, On interpolation functions II, Acta Sci. Math. (Szeged) 29 pp 91– (1968) · Zbl 0157.44103
[5] Ren, Some Orlicz-norm inequalities for martingales, Stat. Probab. Lett. 79 (9) pp 1238– (2009) · Zbl 1172.60011 · doi:10.1016/j.spl.2009.01.013
[6] Viviani, An atomic decomposition of the predual of \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}\({\mathrm BMO}(\rho )\)\end{document}, Rev. Mat. Iberoam. 3 (3-4) pp 401– (1987) · Zbl 0665.46022 · doi:10.4171/RMI/56
[7] Weisz, Martingale Hardy spaces for \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}\(0 < p \leq 1\)\end{document}, Probab. Theory Relat. Fields 84 (3) pp 361– (1990) · Zbl 0687.60046 · doi:10.1007/BF01197890
[8] Weisz, Martingale Hardy Spaces and their Applications in Fourier Analysis, Lecture Notes in Mathematics Vol. 1568 (1994) · Zbl 0796.60049
[9] Weisz, \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}\((C,\alpha )\)\end{document} summability of Walsh-Fourier series, Anal. Math. 27 (2) pp 141– (2001) · Zbl 0992.42016 · doi:10.1023/A:1014364010470
[10] Yong, Atomic decompositions of Lorentz martingale spaces and applications, J. Funct. Spaces Appl. 7 (2) pp 153– (2009) · Zbl 1173.60320 · doi:10.1155/2009/465079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.