×

A Ferguson-Klass-LePage series representation of multistable multifractional motions and related processes. (English) Zbl 1260.60096

Summary: The study of non-stationary processes whose local form has controlled properties is a fruitful and important area of research, both in theory and application. In [K.J. Falconer and the second author, J. Theor. Probab. 22, No. 2, 375–401 (2009; Zbl 1171.60010)], a particular way of constructing such processes was investigated, leading in particular to multifractional multistable processes, which were built using sums over Poisson processes. We present here a different construction of these processes, based on the Ferguson-Klass-LePage series representation of stable processes. We consider various particular cases of interest, including multistable Lévy motion, multistable reverse Ornstein-Uhlenbeck process, log-fractional multistable motion and linear multistable multifractional motion. We also show that the processes defined here have the same finite dimensional distributions as the corresponding processes built in [loc. cit.]. Finally, we display numerical experiments showing graphs of synthesized paths of such processes.

MSC:

60G52 Stable stochastic processes
60G17 Sample path properties

Citations:

Zbl 1171.60010

References:

[1] Ayache, A. and Levy Vehel, J. (2000). The generalized multifractional Brownian motion. Stat. Inference Stoch. Process. 3 7-18. · Zbl 0979.60023 · doi:10.1023/A:1009901714819
[2] Benassi, A., Jaffard, S. and Roux, D. (1997). Elliptic Gaussian random processes. Rev. Mat. Iberoam. 13 19-90. · Zbl 0880.60053 · doi:10.4171/RMI/217
[3] Bentkus, V., Juozulynas, A. and Paulauskas, V. (2001). Lévy-LePage series representation of stable vectors: Convergence in variation. J. Theoret. Probab. 14 949-978. · Zbl 1160.60310 · doi:10.1023/A:1017520702943
[4] Dembo, A. and Zeitouni, O. (1998). Large Deviations Techniques and Applications , 2nd ed. Applications of Mathematics ( New York ) 38 . New York: Springer. · Zbl 0896.60013
[5] Falconer, K.J. (2002). Tangent fields and the local structure of random fields. J. Theoret. Probab. 15 731-750. · Zbl 1013.60028 · doi:10.1023/A:1016276016983
[6] Falconer, K.J. (2003). The local structure of random processes. J. London Math. Soc. (2) 67 657-672. · Zbl 1054.28003 · doi:10.1112/S0024610703004186
[7] Falconer, K.J., Le Guével, R. and Lévy Véhel, J. (2009). Localisable moving average stable and multistable processes. Stochastic Models 25 648-672. · Zbl 1221.60049 · doi:10.1080/15326340903291321
[8] Falconer, K.J. and Lévy Véhel, J. (2008). Multifractional, multistable, and other processes with prescribed local form, J. Theoret. Probab. , DOI . · Zbl 1171.60010
[9] Ferguson, T.S. and Klass, M.J. (1972). A representation of independent increment processes without Gaussian components. Ann. Math. Statist. 43 1634-1643. · Zbl 0254.60050 · doi:10.1214/aoms/1177692395
[10] Herbin, E. (2006). From \(N\) parameter fractional Brownian motions to \(N\) parameter multifractional Brownian motions. Rocky Mountain J. Math. 36 1249-1284. · Zbl 1135.60020 · doi:10.1216/rmjm/1181069415
[11] Kolmogoroff, A.N. (1940). Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C. R. ( Doklady ) Acad. Sci. URSS ( N.S. ) 26 115-118. · Zbl 0022.36001
[12] Le Guével, R. and Lévy Véhel, J. (2008). Incremental moments and Hölder exponents of multifractional multistable processes. Preprint. Available at . · Zbl 1292.60050
[13] Le Page, R. (1980). Multidimensionely divisible variables and processes. I. Stable case. Technical Report 292, Dept. Statistics, Stanford Univ.
[14] Le Page, R. (1981). Multidimensional infinitely divisible variables and processes. II. In Probability in Banach Spaces , III ( Medford , MA , 1980). Lecture Notes in Math. 860 279-284. Berlin: Springer. · Zbl 0469.60012
[15] Ledoux, M. and Talagrand, M. (1996). Probability in Banach Spaces . Berlin: Springer. · Zbl 0748.60004
[16] Mandelbrot, B.B. and Van Ness, J.W. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 422-437. · Zbl 0179.47801 · doi:10.1137/1010093
[17] Peltier, R.F. and Lévy Véhel, J. (1995). Multifractional Brownian motion: Definition and preliminary results. Rapport de Recherche de L’INRIA, 2645. Available at .
[18] Petrov, V.V. (1995). Limit Theorems of Probability Theory : Sequences of Independent Random Variables. Oxford Studies in Probability 4 . New York: Oxford Univ. Press. · Zbl 0826.60001
[19] Rosiński, J. (1990). On series representations of infinitely divisible random vectors. Ann. Probab. 18 405-430. · Zbl 0701.60004 · doi:10.1214/aop/1176990956
[20] Samorodnitsky, G. and Taqqu, M.S. (1994). Stable Non-Gaussian Random Processes : Stochastic Models With Infinite Variance. Stochastic Modeling . New York: Chapman & Hall. · Zbl 0925.60027
[21] Stoev, S. and Taqqu, M.S. (2004). Stochastic properties of the linear multifractional stable motion. Adv. in Appl. Probab. 36 1085-1115. · Zbl 1068.60057 · doi:10.1239/aap/1103662959
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.