zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global robust stability criteria for T-S fuzzy systems with distributed delays and time delay in the leakage term. (English) Zbl 1260.93101
Summary: The paper is concerned with robust stability criteria for Takagi-Sugeno (T-S) fuzzy systems with distributed delays and time delay in the leakage term. By exploiting a model transformation, the system is converted to one of the neutral delay system. Global robust stability result is proposed by a new Lyapunov-Krasovskii functional which takes into account the range of delay and by making use of some inequality techniques. Based on the interval time-varying delays, new stability criteria are obtained in terms of linear matrix inequalities (LMIs). Finally, three numerical examples and their simulations are given to show the effectiveness and advantages of our results.

93C42Fuzzy control systems
34K20Stability theory of functional-differential equations
34K36Fuzzy functional-differential equations
93D09Robust stability of control systems