Cascini, Paolo; Lazić, Vladimir New outlook on the minimal model program. I. (English) Zbl 1261.14007 Duke Math. J. 161, No. 12, 2415-2467 (2012). Let \(X\) be a smooth complex projective variety and \(\Delta\) a \(\mathbb Q\)-divisor with simple normal crossings such that \(\lfloor \Delta \rfloor =0\). It is proven in [C. Birkar et al., J. Am. Math. Soc. 23, No. 2, 405–468 (2010; Zbl 1210.14019)] that the log canonical ring \[ R(K_X+\Delta )=\bigoplus _{m\geq 0} H^0(X,\mathcal O _X(m(K_X+\Delta ))) \] is finitely generated. This is one of the fundamental results of the minimal model program (MMP) and the original proof heavily relies and builds on techniques developed for the MMP. The main result of the paper under review is a new and self contained proof of the above result which avoids the techniques of the MMP. Reviewer: Christopher Hacon (Salt Lake City) Cited in 2 ReviewsCited in 11 Documents MSC: 14E30 Minimal model program (Mori theory, extremal rays) Keywords:minimal models Citations:Zbl 1210.14019 PDF BibTeX XML Cite \textit{P. Cascini} and \textit{V. Lazić}, Duke Math. J. 161, No. 12, 2415--2467 (2012; Zbl 1261.14007) Full Text: DOI arXiv Euclid OpenURL References: [1] I. Arzhantsev, U. Derenthal, J. Hausen, and A. Laface, Cox rings , preprint, [math.AG] 1003.4229v2 [2] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type , J. Amer. Math. Soc. 23 (2010), 405-468. · Zbl 1210.14019 [3] N. Bourbaki, Commutative Algebra, Chapters 1-7 , reprint of the 1972 ed., Elem. Math. (Berlin), Springer, Berlin, 1989. · Zbl 0666.13001 [4] P. Cascini and V. Lazić, The Minimal Model Program revisited , to appear in Contributions to Algebraic Geometry, preprint, [math.AG] 1202.0738v1 [5] A. Corti, “\(3\)-fold flips after Shokurov” in Flips for \(3\)-folds and \(4\)-folds , Oxford Lecture Ser. Math. Appl. 35 , Oxford Univ. Press, Oxford, 2007, 18-48. · Zbl 1286.14022 [6] A. Corti, “Finite generation of adjoint rings after Lazić: An introduction” in Classification of Algebraic Varieties , EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2011, 197-220. · Zbl 1216.14011 [7] A. Corti and V. Lazić, New outlook on the Minimal Model Program, II , to appear in Math. Ann., preprint, [math.AG] 1005.0614v3 · Zbl 1053.14502 [8] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, and M. Popa, Asymptotic invariants of base loci , Ann. Inst. Fourier (Grenoble) 56 (2006), 1701-1734. · Zbl 1127.14010 [9] O. Fujino and S. Mori, A canonical bundle formula , J. Differential Geom. 56 (2000), 167-188. · Zbl 1032.14014 [10] W. Fulton, Introduction to Toric Varieties , Ann. of Math. Stud. 131 , Princeton Univ. Press, Princeton, 1993. · Zbl 0813.14039 [11] C. D. Hacon and S. J. Kovács, Classification of Higher Dimensional Algebraic Varieties , Oberwolfach Semin. 41 , Birkhäuser, Basel, 2010. · Zbl 1204.14001 [12] C. D. Hacon and J. MCKernan, Existence of minimal models for varieties of log general type, II , J. Amer. Math. Soc. 23 (2010), 469-490. · Zbl 1210.14021 [13] J. Kollár and S. Mori, Birational Geometry of Algebraic Varieties , Cambridge Tracts in Math. 134 , Cambridge Univ. Press, Cambridge, 1998. [14] V. Lazić, Adjoint rings are finitely generated , preprint, [math.AG] 0905.2707v3 [15] S. Mori, Threefolds whose canonical bundles are not numerically effective , Ann. of Math. (2) 116 (1982), 133-176. · Zbl 0557.14021 [16] N. Nakayama, Zariski-decomposition and Abundance , MSJ Mem. 14 , Math. Soc. Japan, Tokyo, 2004. · Zbl 1061.14018 [17] M. Păun, Relative critical exponents, non-vanishing and metrics with minimal singularities , Invent. Math. 187 (2012), 195-258. · Zbl 1251.32018 [18] V. V. Shokurov, Prelimiting flips (in Russian), Tr. Mat. Inst. Steklova 240 (2003), 82-219; English translation in Proc. Steklov Inst. of Math. 2003 (240), 75-213. · Zbl 1082.14019 [19] Y.-T. Siu, Invariance of plurigenera , Invent. Math. 134 (1998), 661-673. · Zbl 0955.32017 [20] Y.-T. Siu, Finite generation of canonical ring by analytic method , Sci. China Ser. A 51 (2008), 481-502. · Zbl 1153.32021 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.