×

Loewner matrices of matrix convex and monotone functions. (English) Zbl 1261.15026

Under some conditions on the real \(C^{1}\) functions \(f(t), tf(t)\), and \(t^{2}f(t)\) on \((0,\infty )\), the author obtains characterizations of matrix convexity and matrix monotony of the above functions in terms of the conditional negative or positive definiteness of Loewner matrices. The obtained results are applied to power functions \(t^{\alpha }\) on \((0,\infty )\). Similar characterizations of matrix monotone functions on a finite interval \((a,b)\) are obtained by utilizing an operator monotone bijection between\((a,b)\) and \((0,1)\).

MSC:

15A45 Miscellaneous inequalities involving matrices
47A63 Linear operator inequalities
42A82 Positive definite functions in one variable harmonic analysis
PDF BibTeX XML Cite
Full Text: DOI arXiv Euclid

References:

[1] R. B. Bapat and T. E. S. Raghavan, Nonnegative Matrices and Applications, Cambridge University Press, Cambridge, 1997. · Zbl 0879.15015
[2] R. Bhatia, Matrix Analysis, Springer-Verlag, New York, 1996. · Zbl 0863.15001
[3] R. Bhatia and T. Sano, Loewner matrices and operator convexity, Math. Ann., 344 (2009), 703-716. · Zbl 1172.15010
[4] R. Bhatia and T. Sano, Positivity and conditional positivity of Loewner matrices, Positivity, 14 (2010), 421-430. · Zbl 1204.15039
[5] A. M. Bruckner and E. Ostrow, Some function classes related to the class of convex functions, Pacific J. Math., 12 (1962), 1203-1215. · Zbl 0121.29501
[6] W. F. Donoghue, Jr., Monotone Matrix Functions and Analytic Continuation, Springer-Verlag, Berlin-Heidelberg-New York, 1974. · Zbl 0278.30004
[7] F. Hansen and G. K. Pedersen, Jensen’s inequality for operators and Löwner’s theorem, Math. Ann., 258 (1982), 229-241. · Zbl 0473.47011
[8] F. Hansen and J. Tomiyama, Differential analysis of matrix convex functions II, J. Inequal. Pure Appl. Math., 10 (2009), Article 32, 5 pp. · Zbl 1167.26307
[9] F. Hiai, Matrix analysis: matrix monotone functions, matrix means, and majorization, Interdiscip. Inform. Sci., 16 (2010), 139-248. · Zbl 1206.15019
[10] R. A. Horn, Schlicht mappings and infinitely divisible kernels, Pacific J. Math., 38 (1971), 423-430. · Zbl 0203.07802
[11] F. Kraus, Über konvexe Matrixfunktionen, Math. Z., 41 (1936), 18-42. · Zbl 0013.39701
[12] K. Löwner, Über monotone Matrixfunktionen, Math. Z., 38 (1934), 177-216. · Zbl 0008.11301
[13] H. Osaka and J. Tomiyama, Double piling structure of matrix monotone functions and of matrix convex functions, Linear Algebra Appl., 431 (2009), 1825-1832. · Zbl 1177.47017
[14] M. Uchiyama, Operator monotone functions, positive definite kernels and majorization, Proc. Amer. Math. Soc., 138 (2010), 3985-3996. · Zbl 1225.47016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.