A generalized nonuniform contraction and Lyapunov function. (English) Zbl 1261.34043

Summary: For nonautonomous linear equations \(x' = A(t)x\), we give a complete characterization of general nonuniform contractions in terms of Lyapunov functions. We consider the general case of nonuniform contractions, which corresponds to the existence of what we call nonuniform \((D, \mu)\)-contractions. As an application, we establish the robustness of the nonuniform contraction under sufficiently small linear perturbations. Moreover, we show that the stability of a nonuniform contraction persists under sufficiently small nonlinear perturbations.


34D20 Stability of solutions to ordinary differential equations
34A30 Linear ordinary differential equations and systems
34D09 Dichotomy, trichotomy of solutions to ordinary differential equations
34D10 Perturbations of ordinary differential equations
Full Text: DOI


[1] L. Barreira, J. Chu, and C. Valls, “Robustness of nonuniform dichotomies with different growth rates,” São Paulo Journal of Mathematical Sciences, vol. 5, pp. 1-29, 2011. · Zbl 1272.34067
[2] A. M. Lyapunov, The General Problem of the Stability of Motion, Taylor & Francis, 1992. · Zbl 0786.70001
[3] W. A. Coppel, Dichotomies in Stability Theory, vol. 629 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 1978. · Zbl 0376.34001
[4] W. Hahn, Stability of Motion, Grundlehren der mathematischen Wissenschaften 138, Springer, 1967. · Zbl 0189.38503
[5] J. LaSalle and S. Lefschetz, Stability by Liapunov’s Direct Method with Applications, vol. 4 of Mathematics in Science and Engineering, Academic Press, 1961. · Zbl 0098.06102
[6] Y. A. Mitropolsky, A. M. Samoilenko, and V. L. Kulik, Dichotomies and Stability in Nonautonomous Linear Systems, vol. 14 of Stability and Control: Theory, Methods and Applications, Taylor & Francis, 2003. · Zbl 1026.93003
[7] L. Barreira and C. Valls, Stability of Nonautonomous Differential Equations, vol. 1926 of Lecture Notes in Mathematics, Springer, Berlin, Germany, 2008. · Zbl 1152.34003 · doi:10.1007/978-3-540-74775-8
[8] L. Barreira and C. Valls, “Quadratic Lyapunov functions and nonuniform exponential dichotomies,” Journal of Differential Equations, vol. 246, no. 3, pp. 1235-1263, 2009. · Zbl 1165.34030 · doi:10.1016/j.jde.2008.06.008
[9] L. Barreira, J. Chu, and C. Valls, “Lyapunov functions for general nonuniform dichotomies,” Preprint. · Zbl 1273.34057
[10] L. Barreira and C. Valls, “Lyapunov functions versus exponential contractions,” Mathematische Zeitschrift, vol. 268, no. 1-2, pp. 187-196, 2011. · Zbl 1330.34098 · doi:10.1007/s00209-010-0665-x
[11] J. L. Massera and J. J. Schäffer, “Linear differential equations and functional analysis. I,” Annals of Mathematics, vol. 67, pp. 517-573, 1958. · Zbl 0178.17701 · doi:10.2307/1969871
[12] O. Perron, “Die Stabilitätsfrage bei Differentialgleichungen,” Mathematische Zeitschrift, vol. 32, no. 1, pp. 703-728, 1930. · JFM 56.1040.01 · doi:10.1007/BF01194662
[13] J. Daletskiĭ and M. Kreĭn, Stability of Solutions of Differential Equations in Banach Space, Translations of Mathematical Monographs 43, American Mathematical Society, 1974.
[14] L. Barreira and C. Valls, “Robustness via Lyapunov functions,” Journal of Differential Equations, vol. 246, no. 7, pp. 2891-2907, 2009. · Zbl 1192.34063 · doi:10.1016/j.jde.2008.11.010
[15] S.-N. Chow and H. Leiva, “Existence and roughness of the exponential dichotomy for skew-product semiflow in Banach spaces,” Journal of Differential Equations, vol. 120, no. 2, pp. 429-477, 1995. · Zbl 0831.34067 · doi:10.1006/jdeq.1995.1117
[16] V. A. Pliss and G. R. Sell, “Robustness of exponential dichotomies in infinite-dimensional dynamical systems,” Journal of Dynamics and Differential Equations, vol. 11, no. 3, pp. 471-513, 1999. · Zbl 0941.37052 · doi:10.1023/A:1021913903923
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.