Global synchronization of neutral-type stochastic delayed complex networks. (English) Zbl 1261.34060

Summary: This paper is concerned with a delay-dependent synchronization criterion for neutral-type stochastic delayed complex networks. Firstly, expectations of stochastic cross-terms containing the Itô integral are investigated. Then, based on this, this paper establishes a novel delay-dependent synchronization criterion for neutral-type stochastic delayed complex networks. In the derivation process, the mathematical development avoids bounding stochastic cross-terms. Thus, this method shows less conservatism. Finally, a numerical example is provided to demonstrate the effectiveness of the proposed approach.


34K25 Asymptotic theory of functional-differential equations
34K50 Stochastic functional-differential equations
92B20 Neural networks for/in biological studies, artificial life and related topics
34K40 Neutral functional-differential equations
Full Text: DOI


[1] B. A. Huberman and L. A. Adamic, “Growth dynamics of the world-wide web,” Nature, vol. 401, no. 6749, p. 131, 1999.
[2] R. Pastor-Satorras, E. Smith, and R. V. Solé, “Evolving protein interaction networks through gene duplication,” Journal of Theoretical Biology, vol. 222, no. 2, pp. 199-210, 2003. · doi:10.1016/S0022-5193(03)00028-6
[3] R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Physical Review Letters, vol. 86, no. 14, pp. 3200-3203, 2001. · doi:10.1103/PhysRevLett.86.3200
[4] X. F. Wang and G. Chen, “Synchronization in scale-free dynamical networks: robustness and fragility,” IEEE Transactions on Circuits and Systems I, vol. 49, no. 1, pp. 54-62, 2002. · Zbl 1368.93576 · doi:10.1109/81.974874
[5] D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-world” networks,” Nature, vol. 393, no. 6684, pp. 440-442, 1998. · Zbl 1368.05139 · doi:10.1038/30918
[6] A. L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509-512, 1999. · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[7] S. Boccalettia, V. Latorab, Y. Morenod, M. Chavezf, and D. U. Hwang, “Complex networks: structure and dynamics,” Physics Reports, vol. 424, no. 4-5, pp. 175-308, 2006. · Zbl 1371.82002 · doi:10.1016/j.physrep.2005.10.009
[8] C. W. Wu, “Synchronization in arrays of coupled nonlinear systems: passivity, circle criterion, and observer design,” IEEE Transactions on Circuits and Systems I, vol. 48, no. 10, pp. 1257-1261, 2001. · Zbl 0999.94577 · doi:10.1109/81.956024
[9] C. W. Wu, “Synchronization in coupled arrays of chaotic oscillators with nonreciprocal coupling,” IEEE Transactions on Circuits and Systems I, vol. 50, no. 2, pp. 294-297, 2003. · Zbl 1368.34051 · doi:10.1109/TCSI.2002.808215
[10] J. Lü and G. Chen, “A time-varying complex dynamical network model and its controlled synchronization criteria,” IEEE Transactions on Automatic Control, vol. 50, no. 6, pp. 841-846, 2005. · Zbl 1365.93406 · doi:10.1109/TAC.2005.849233
[11] J. Lü, X. Yu, and G. Chen, “Chaos synchronization of general complex dynamical networks,” Physica A, vol. 334, no. 1-2, pp. 281-302, 2004. · doi:10.1016/j.physa.2003.10.052
[12] W. Yu, J. Cao, G. Chen, J. Lü, J. Han, and W. Wei, “Local synchronization of a complex network model,” IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 39, no. 1, pp. 230-241, 2009. · doi:10.1109/TSMCB.2008.2004964
[13] C. Li and G. Chen, “Synchronization in general complex dynamical networks with coupling delays,” Physica A, vol. 343, no. 1-4, pp. 263-278, 2004. · doi:10.1016/j.physa.2004.05.058
[14] J. Cao, P. Li, and W. Wang, “Global synchronization in arrays of delayed neural networks with constant and delayed coupling,” Physics Letters, Section A, vol. 353, no. 4, pp. 318-325, 2006. · doi:10.1016/j.physleta.2005.12.092
[15] H. Gao, J. Lam, and G. Chen, “New criteria for synchronization stability of general complex dynamical networks with coupling delays,” Physics Letters, Section A, vol. 360, no. 2, pp. 263-273, 2006. · Zbl 1236.34069 · doi:10.1016/j.physleta.2006.08.033
[16] J. Zhou and T. P. Chen, “Synchronization in general complex delayed dynamical networks,” IEEE Transactions on Circuits and Systems I, vol. 53, no. 3, pp. 733-744, 2006. · Zbl 1374.37056 · doi:10.1109/TCSI.2005.859050
[17] Z. H. Guan, Z. W. Liu, G. Feng, and Y. W. Wang, “Synchronization of complex dynamical networks with time-varying delays via impulsive distributed control,” IEEE Transactions on Circuits and Systems I, vol. 57, no. 8, pp. 2182-2195, 2010. · doi:10.1109/TCSI.2009.2037848
[18] Y. Dai, Y. Cai, and X. Xu, “Synchronization criteria for complex dynamical networks with neutral-type coupling delay,” Physica A, vol. 387, no. 18, pp. 4673-4682, 2008. · doi:10.1016/j.physa.2008.03.024
[19] Y. J. Zhang, S. Y. Xu, Y. Chu, and J. Lu, “Robust global synchronization of complex networks with neutral-type delayed nodes,” Applied Mathematics and Computation, vol. 216, no. 3, pp. 768-778, 2010. · Zbl 1364.34110 · doi:10.1016/j.amc.2010.01.075
[20] D. H. Ji, D. W. Lee, J. H. Koo, S. C. Won, S. M. Lee, and J. H. Park, “Synchronization of neutral complex dynamical networks with coupling time-varying delays,” Nonlinear Dynamics, vol. 65, no. 4, pp. 349-358, 2011. · Zbl 1280.93005 · doi:10.1007/s11071-010-9896-y
[21] Z. Wang, Y. Wang, and Y. Liu, “Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays,” IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 11-25, 2010. · doi:10.1109/TNN.2009.2033599
[22] J. H. Park, S. M. Lee, and H. Y. Jung, “LMI optimization approach to synchronization of stochastic delayed discrete-time complex networks,” Journal of Optimization Theory and Applications, vol. 143, no. 2, pp. 357-367, 2009. · Zbl 1175.90085 · doi:10.1007/s10957-009-9562-z
[23] W. Zhou, T. Wang, and J. Mou, “Synchronization control for the competitive complex networks with time delay and stochastic effects,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 8, pp. 3417-3426, 2012. · Zbl 1245.93141 · doi:10.1016/j.cnsns.2011.12.021
[24] J. Cao, Z. Wang, and Y. Sun, “Synchronization in an array of linearly stochastically coupled networks with time delays,” Physica A, vol. 385, no. 2, pp. 718-728, 2007. · doi:10.1016/j.physa.2007.06.043
[25] Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, “Delay-dependent robust stabilization of uncertain state-delayed systems,” International Journal of Control, vol. 74, no. 14, pp. 1447-1455, 2001. · Zbl 1023.93055 · doi:10.1080/00207170110067116
[26] E. Fridman, “New Lyapunov-Krasovskii functionals for stability of linear retarded and neutral type systems,” Systems and Control Letters, vol. 43, no. 4, pp. 309-319, 2001. · Zbl 0974.93028 · doi:10.1016/S0167-6911(01)00114-1
[27] Y. He, M. Wu, J. H. She, and G. P. Liu, “Delay-dependent robust stability criteria for uncertain neutral systems with mixed delays,” Systems and Control Letters, vol. 51, no. 1, pp. 57-65, 2004. · Zbl 1157.93467 · doi:10.1016/S0167-6911(03)00207-X
[28] W. H. Chen, W. X. Zheng, and Y. Shen, “Delay-dependent stochastic stability and H\infty -control of uncertain neutral stochastic systems with time delay,” IEEE Transactions on Automatic Control, vol. 54, no. 7, pp. 1660-1667, 2009. · Zbl 1367.93694 · doi:10.1109/TAC.2009.2017981
[29] L. Huang and X. Mao, “Delay-dependent exponential stability of neutral stochastic delay systems,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 147-152, 2009. · Zbl 1367.93511 · doi:10.1109/TAC.2008.2007178
[30] B. Zhang, S. Xu, G. Zong, and Y. Zou, “Delay-dependent exponential stability for uncertain stochastic hopfield neural networks with time-varying delays,” IEEE Transactions on Circuits and Systems I, vol. 56, no. 6, pp. 1241-1247, 2009. · doi:10.1109/TCSI.2008.2008499
[31] W. H. Chen and W. X. Zheng, “Robust stability analysis for stochastic neural networks with time-varying delay,” IEEE Transactions on Neural Networks, vol. 21, no. 3, pp. 508-514, 2010. · doi:10.1109/TNN.2009.2040000
[32] Y. Wang, Z. Wang, and J. Liang, “A delay fractioning approach to global synchronization of delayed complex networks with stochastic disturbances,” Physics Letters, Section A, vol. 372, no. 39, pp. 6066-6073, 2008. · Zbl 1223.90013 · doi:10.1016/j.physleta.2008.08.008
[33] P. Balasubramaniam, S. Lakshmanan, and R. Rakkiyappan, “Delay-interval dependent robust stability criteria for stochastic neural networks with linear fractional uncertainties,” Neurocomputing, vol. 72, no. 16-18, pp. 3675-3682, 2009. · Zbl 05721155 · doi:10.1016/j.neucom.2009.06.006
[34] T. Senthilkumar and P. Balasubramaniam, “Delay-dependent robust stabilization and H\infty control for nonlinear stochastic systems with Markovian jump parameters and interval time-varying delays,” Journal of Optimization Theory and Applications, vol. 151, no. 1, pp. 100-120, 2011. · Zbl 1245.93120 · doi:10.1007/s10957-011-9858-7
[35] B. Øksendal, Stochastic Differential Equations: An Introduction with Applications, Springer, Berlin, Germany, 5th edition, 2000.
[36] H. Kuo, Introduction to Stochastic Integration, Springer, New York, NY, USA, 2006. · Zbl 1101.60001
[37] X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, Chichester, UK, 2nd edition, 2007. · Zbl 1138.60005
[38] Z. Wang, H. Shu, J. Fang, and X. Liu, “Robust stability for stochastic Hopfield neural networks with time delays,” Nonlinear Analysis: Real World Applications, vol. 7, no. 5, pp. 1119-1128, 2006. · Zbl 1122.34065 · doi:10.1016/j.nonrwa.2005.10.004
[39] Z. Orman, “New sufficient conditions for global stability of neutral-type neural networks with time delays,” Neurocomputing, vol. 97, pp. 141-148, 2012. · Zbl 06075825 · doi:10.1016/j.neucom.2012.05.016
[40] R. Samli and S. Arik, “New results for global stability of a class of neutral-type neural systems with time delays,” Applied Mathematics and Computation, vol. 210, no. 2, pp. 564-570, 2009. · Zbl 1170.34352 · doi:10.1016/j.amc.2009.01.031
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.