×

\(Q\)-manifolds and Mackenzie theory. (English) Zbl 1261.53080

The main result is a characterization of double Lie algebroids, defined by K. C. H. Mackenzie in [Adv. Math. 94, No. 2, 180–239 (1992; Zbl 0765.57025); Adv. Math. 154, No. 1, 46–75 (2000; Zbl 0971.58015)], as a double vector bundle endowed with a pair of commuting homological vector fields of appropriate weights. This is achieved by the fiberwise parity reversion of the original double vector bundle in both directions, which should be contrasted with Mackenzie’s original approach based on dualizations. Though Voronov’s statement looks very natural, the proof is really hard because it requires a supergeometric rephrasing of Mackenzie’s conditions from his original definition that heavily rely on the non-trivial duality theory for double vector bundles. In fact, the paper contains two proofs of the main result, which are more or less independent: one by a brute calculation, and a more conceptual one. This theory is extended to multiple Lie algebroids which are introduced here. Since the appearance of preliminary preprint versions of this paper, it has already influenced some further work, for example, [K. C. H. Mackenzie, J. Reine Angew. Math. 658, 193–245 (2011; Zbl 1246.53112)].

MSC:

53D17 Poisson manifolds; Poisson groupoids and algebroids
58H05 Pseudogroups and differentiable groupoids

References:

[1] Courant T.: Tangent Lie algebroids. J. Phys. A 27(13), 4527–4536 (1994) · Zbl 0843.58044 · doi:10.1088/0305-4470/27/13/026
[2] Gracia-Saz A., Mackenzie K.C.H.: Duality functors for triple vector bundles. Lett. Math. Phys. 90(1-3), 175–200 (2009) · Zbl 1180.53082 · doi:10.1007/s11005-009-0346-z
[3] Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups. In: Mathematical aspects of classical field theory, Volume 132 of Contemp. Math., Providence, RI: Amer. Math. Soc., 1992, pp. 459–489 · Zbl 0847.17020
[4] Kosmann-Schwarzbach Y.: Exact Gerstenhaber algebras and Lie bialgebroids. Acta Appl. Math. 41, 153–165 (1995) · Zbl 0837.17014 · doi:10.1007/BF00996111
[5] Kosmann-Schwarzbach Y.: From Poisson algebras to Gerstenhaber algebras. Ann. Inst. Fourier, Grenoble 46, 1243–1274 (1996) · Zbl 0858.17027 · doi:10.5802/aif.1547
[6] Liu Zh.-J., Weinstein A., Xu P.: Manin triples for Lie bialgebroids. J. Diff. Geom. 45, 547–574 (1997) · Zbl 0885.58030
[7] Mackenzie K.C.H.: Double Lie algebroids and second-order geometry. I. Adv. Math. 94(2), 180–239 (1992) · Zbl 0765.57025 · doi:10.1016/0001-8708(92)90036-K
[8] Mackenzie K.C.H.: Double Lie algebroids and second-order geometry. II. Adv. Math. 154(1), 46–75 (2000) · Zbl 0971.58015 · doi:10.1006/aima.1999.1892
[9] Mackenzie, K.C.H.: Double Lie algebroids and the double of a Lie bialgebroid. http://arxiv.org/abs/math/9808081v1 [math.DG], 1998
[10] Mackenzie K.C.H.: Drinfel’d doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electron. Res. Announc. Amer. Math. Soc. 4, 74–87 (1998) (electronic) · Zbl 0924.58115 · doi:10.1090/S1079-6762-98-00050-X
[11] Mackenzie K.C.H.: On symplectic double groupoids and the duality of Poisson groupoids. Internat. J. Math. 10(4), 435–456 (1999) · Zbl 0961.58008 · doi:10.1142/S0129167X99000185
[12] Mackenzie, K.C.H.: Notions of double for Lie bialgebroids. http://arxiv.org/abs/math/0011212v1 [math.DG], 2000 · Zbl 0961.58009
[13] Mackenzie, K.C.H.: On certain canonical diffeomorphisms in symplectic and Poisson geometry. In: Quantization, Poisson brackets and beyond. (Manchester, 2001), Volume 315 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2002, pp. 187–198 · Zbl 1090.53062
[14] Mackenzie, K.C.H.: Duality and triple structures. In: The breadth of symplectic and Poisson geometry, Festschrift in Honor of Alan Weinstein, Volume 232 of Progr. Math., Boston, MA: Birkhäuser Boston, 2005, pp. 455–481 · Zbl 1079.53127
[15] Mackenzie, K.C.H.: General theory of Lie groupoids and Lie algebroids. Volume 213 of London Mathematical Society Lecture Note Series. Cambridge: Cambridge University Press, 2005 · Zbl 1078.58011
[16] Mackenzie, K.C.H.: Ehresmann doubles and Drinfel’d doubles for Lie algebroids and Lie bialgebroids. http://arxiv.org/abs/math/0611799v2 [math.DG], 2006
[17] Mackenzie K.C.H.: Ehresmann doubles and Drinfel’d doubles for Lie algebroids and Lie bialgebroids. J. reine angew. Math. 658, 193–245 (2011) · Zbl 1246.53112
[18] Mackenzie K.C.H., Xu P.: Lie bialgebroids and Poisson groupoids. Duke Math. J. 73(2), 415–452 (1994) · Zbl 0844.22005 · doi:10.1215/S0012-7094-94-07318-3
[19] Mackenzie K.C.H., Mokri T.: Locally vacant double Lie groupoids and the integration of matched pairs of Lie algebroids. Geom. Dedicata 77(3), 317–330 (1999) · Zbl 0955.58016 · doi:10.1023/A:1005180403695
[20] Roger, C.: Algèbres de Lie graduées et quantification. In: Symplectic geometry and mathematical physics (Aix-en-Provence, 1990), Volume 99 of Progr. Math., Boston, MA: Birkhäuser Boston 1991, pp. 374–421
[21] Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. PhD thesis, UC Berkeley, 1999, http://arxiv.org/abs/math/9910078v1 [math.DG], 1999
[22] Tulczyjew, W.M.: A symplectic formulation of particle dynamics. In: Differential Geometric Methods in Mathematical Physics, Bonn 1975, Volume 570 of Lecture Notes in Math.. Berlin: Springer-Verlag, 1977, pp. 457–463
[23] Vaĭntrob A.Yu.: Lie algebroids and homological vector fields. Usp. Matem. Nauk 52(2), 428–429 (1997) · Zbl 0955.58017
[24] Voronov, Th.Th.: Graded manifolds and Drinfeld doubles for Lie bialgebroids. In: Quantization, Poisson Brackets and Beyond. Volume 315 of Contemp. Math., Providence, RI: Amer. Math. Soc., 2002, pp. 131–168 · Zbl 1042.53056
[25] Voronov, Th.Th.: Mackenzie theory and Q-manifolds. http://arxiv.org/abs/math/0608111v2 [math.DG], 2006
[26] Voronov, Th.Th.: Q-manifolds and Mackenzie theory: an overview. ESI preprint 1952, 2007, http://arxiv.org/abs/0709.4232v1 [math.DG], 2007
[27] Weinstein A.: Symplectic groupoids and Poisson manifolds. Bull. Amer. Math. Soc. (N.S.) 16(1), 101–104 (1987) · Zbl 0618.58020 · doi:10.1090/S0273-0979-1987-15473-5
[28] Weinstein A.: Coisotropic calculus and Poisson groupoids. J. Math. Soc. Japan 40(4), 705–727 (1988) · Zbl 0642.58025 · doi:10.2969/jmsj/04040705
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.