zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Refining a relativistic, hydrodynamic solver: admitting ultra-relativistic flows. (English) Zbl 1261.85001
Summary: We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range $10^{2}-10^{6}$. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above $10^{2}$ and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shock waves. The shock waves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.
85A15Galactic and stellar structure
76A99Foundations, constitutive equations, rheology
Full Text: DOI
[1] Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.: The velocity distribution of isolated radio pulsars, Apj 568, No. March, 289-301 (2002)
[2] I.N. Bronshtein, K.A. Semendyayev, in: K.A. Hirsch, Handbook of Mathematics, third ed., Springer Verlag Telos, 1997.
[3] Bucciantini, N.: Modeling pulsar wind nebulae, Advances in space research 41, 491-502 (2008)
[4] Bucciantini, N.; Amato, E.; Del Zanna, L.: Relativistic MHD simulations of pulsar bow-shock nebulae, A&A 434, No. April, 189-199 (2005)
[5] Chatterjee, S.; Cordes, J. M.: Bow shocks from neutron stars: scaling laws and hubble space telescope observations of the guitar nebula, Apj 575, No. August, 407-418 (2002)
[6] Cordes, J. M.; Chernoff, D. F.: Neutron star population dynamics. II. three-dimensional space velocities of Young pulsarsm, Apj 505, No. September, 315-338 (1998)
[7] Cordes, J. M.; Romani, R. W.; Lundgren, S. C.: The guitar nebula -- a bow shock from a slow-spin, high-velocity neutron star, Nature 362, No. March, 133-135 (1993)
[8] Del Zanna, L.; Amato, E.; Bucciantini, N.: Axially symmetric relativistic MHD simulations of pulsar wind nebulae in supernova remnants. On the origin of torus and jet-like features, A&A 421, No. July, 1063-1073 (2004)
[9] Del Zanna, L.; Bucciantini, N.: An efficient shock-capturing central-type scheme for multidimensional relativistic flows. I. hydrodynamics, A&A 390, No. August, 1177-1186 (2002) · Zbl 1209.76022
[10] Del Zanna, L.; Bucciantini, N.; Londrillo, P.: An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. magnetohydrodynamics, A&A 400, No. March, 397-413 (2003) · Zbl 1222.76122 · doi:10.1051/0004-6361:20021641
[11] Delettrez, J. A.; Myatt, J.; Radha, P. B.; Stoeckl, C.; Skupsky, S.; Meyerhofer, D. D.: Hydrodynamic simulations of integrated experiments planned for the OMEGA/OMEGA EP laser systems, Plasma physics and controlled fusion 47, No. December, B791-B798 (2005)
[12] Duncan, G. C.; Hughes, P. A.: Simulations of relativistic extragalactic jets, Apj 436, No. December, L119-L122 (1994)
[13] Emmering, R. T.; Chevalier, R. A.: Shocked relativistic magnetohydrodynamic flows with application to pulsar winds, Apj 321, No. October, 334-348 (1987)
[14] Fryxell, B.; Olson, K.; Ricker, P.; Timmes, F. X.; Zingale, M.; Lamb, D. Q.; Macneice, P.; Rosner, R.; Truran, J. W.; Tufo, H.: FLASH: an adaptive mesh hydrodynamics code for modeling astrophysical thermonuclear flashes, Apjs 131, No. November, 273-334 (2000)
[15] Gaensler, B. M.; Slane, P. O.: The evolution and structure of pulsar wind nebulae, Ara&A 44, No. September, 17-47 (2006)
[16] Gammie, C. F.; Mckinney, J. C.; Tóth, G.: HARM: a numerical scheme for general relativistic magnetohydrodynamics, Apj 589, No. May, 444-457 (2003)
[17] S.K. Godunov, Difference methods for the numerical calculations of discontinuous solutions of the equations of fluid dynamics, Mat. Sb. 47 (1959) 271 -- 306 (in Russian, translation in: US Joint Publ. Res. Service, JPRS 7226 (1969)).
[18] Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H.: How massive single stars end their life, Apj 591, No. July, 288-300 (2003)
[19] Hirano, T.: Hydrodynamic models, Journal of physics G nuclear physics 30, No. August, S845-S851 (2004)
[20] Hughes, P. A.: The origin of complex behavior of linearly polarized components in parsec-scale jets, Apj 621, No. March, 635-642 (2005)
[21] Hughes, P. A.; Miller, M. A.; Duncan, G. C.: Three-dimensional hydrodynamic simulations of relativistic extragalactic jets, Apj 572, No. June, 713-728 (2002)
[22] Ibanez, J. M.: Numerical relativistic hydrodynamics, Lecture notes in physics 617, 113-129 (2003)
[23] O. Kargaltsev, G.G. Pavlov, Pulsar Wind Nebulae in the Chandra Era, ArXiv e-prints, January 2008, p. 801. Available from: <http://adsabs.harvard.edu/abs/2008AIPC..983..171K>.
[24] Kennel, C. F.; Coroniti, F. V.: Confinement of the crab pulsar’s wind by its supernova remnant, Apj 283, No. August, 694-709 (1984)
[25] Kennel, C. F.; Coroniti, F. V.: Magnetohydrodynamic model of crab nebula radiation, Apj 283, No. August, 710-730 (1984)
[26] Komissarov, S. S.: A Godunov-type scheme for relativistic magnetohydrodynamics, Mnras 303, No. February, 343-366 (1999)
[27] Martı&acute, J. M.; ; Müller, E.: Numerical hydrodynamics in special relativity, Living reviews in relativity 6, No. December (2003)
[28] Michel, F. C.: Relativistic stellar-wind torques, Apj 158, No. November, 727-738 (1969)
[29] Michel, F. C.: Rotating magnetospheres: an exact 3-D solution, Apj 180, No. March, L133-L137 (1973)
[30] Mignone, A.; Mckinney, J. C.: Equation of state in relativistic magnetohydrodynamics: variable versus constant adiabatic index, Mnras 378, No. July, 1118-1130 (2007)
[31] S.C. Noble, A numerical study of relativistic fluid collapse, ArXiv General Relativity and Quantum Cosmology e-prints, October 2003.
[32] Noble, S. C.; Gammie, C. F.; Mckinney, J. C.; Del Zanna, L.: Primitive variable solvers for conservative general relativistic magnetohydrodynamics, Apj 641, No. April, 626-637 (2006)
[33] Pacini, F.; Salvati, M.: On the evolution of supernova remnants. Evolution of the magnetic field, particles, content, and luminosity, Apj 186, No. November, 249-266 (1973)
[34] D. Perret-Gallix, Concluding remarks: emerging topics, in: Proceedings of the X International Workshop on Advanced Computing and Analysis Techniques in Physics Research -- ACAT 05, 2006.
[35] Rees, M. J.; Gunn, J. E.: The origin of the magnetic field and relativistic particles in the crab nebula, Mnras 167, No. April, 1-12 (1974)
[36] Romani, R. W.; Cordes, J. M.; Yadigaroglu, I. A.: X-ray emission from the guitar nebula, Apj 484, No. August, L137-L140 (1997)
[37] Ryu, D.; Chattopadhyay, I.; Choi, E.: Equation of state in numerical relativistic hydrodynamics, Apjs 166, No. September, 410-420 (2006)
[38] Schneider, V.; Katscher, U.; Rischke, D. H.; Waldhauser, B.; Maruhn, J. A.; Munz, C. D.: New algorithms for ultra-relativistic numerical hydrodynamics, Journal of computational physics 105, No. March, 92-107 (1993) · Zbl 0779.76062 · doi:10.1006/jcph.1993.1056
[39] Shibata, M.: Axisymmetric general relativistic hydrodynamics: long-term evolution of neutron stars and stellar collapse to neutron stars and black holes, Physical review D 67, No. 2, 024-033 (2003)
[40] Thompson, K. W.: The special relativistic shock tube, Journal of fluid mechanics 171, No. October, 365-375 (1986) · Zbl 0609.76133 · doi:10.1017/S0022112086001489
[41] Van Der Swaluw, E.; Achterberg, A.; Gallant, Y. A.: Hydrodynamical simulations of pulsar wind nebulae in supernova remnants, Memorie Della societa astronomica italiana 69, 1017-1022 (1998)
[42] Van Der Swaluw, E.; Achterberg, A.; Gallant, Y. A.; Downes, T. P.; Keppens, R.: Interaction of high-velocity pulsars with supernova remnant shells, A&A 397, No. January, 913-920 (2003)
[43] Van Der Swaluw, E.; Achterberg, A.; Gallant, Y. A.; Tóth, G.: Pulsar wind nebulae in supernova remnants. Spherically symmetric hydrodynamical simulations, A&A 380, No. December, 309-317 (2001)
[44] Van Der Swaluw, E.; Downes, T. P.; Keegan, R.: An evolutionary model for pulsar-driven supernova remnants. A hydrodynamical model, A&A 420, No. June, 937-944 (2004)
[45] Vigelius, M.; Melatos, A.; Chatterjee, S.; Gaensler, B. M.; Ghavamian, P.: Three-dimensional hydrodynamic simulations of asymmetric pulsar wind bow shocks, Mnras 374, No. January, 793-808 (2007)
[46] Wang, Q. D.; Li, Z. Y.; Begelman, M. C.: The X-ray-emitting trail of the nearby pulsar PSR1929+10, Nature 364, No. July, 127-129 (1993)
[47] Weaver, R.; Mccray, R.; Castor, J.; Shapiro, P.; Moore, R.: Interstellar bubbles. II -- structure and evolution, Apj 218, No. December, 377-395 (1977)
[48] Zhang, W.; Woosley, S. E.; Macfadyen, A. I.: Relativistic jets in collapsars, Apj 586, No. March, 356-371 (2003)