Heavy-tailed prediction error: a difficulty in predicting biomedical signals of \(1/f\) noise type. (English) Zbl 1261.92029

Summary: A fractal signal \(x(t)\) in biomedical engineering may be characterized by \(1/f\) noise, that is, the power spectrum density (PSD) divergences at \(f = 0\). According to Taqqu’s law, \(1/f\) noise has the properties of long-range dependence and heavy-tailed probability density functions (PDFs). The contribution of this paper is to exhibit that the prediction error of a biomedical signal of \(1/f\) noise type is long-range dependent (LRD). Thus, it is heavy-tailed and of \(1/f\) noise. Consequently, the variance of the prediction error is usually large or may not exist, making predicting biomedical signals of \(1/f\) noise type difficult.


92C55 Biomedical imaging and signal processing
Full Text: DOI


[1] N. Aoyagi, Z. R. Struzik, K. Kiyono, and Y. Yamamoto, “Autonomic imbalance induced breakdown of long-range dependence in healthy heart rate,” Methods of Information in Medicine, vol. 46, no. 2, pp. 174-178, 2007.
[2] S. Tong, D. Jiang, Z. Wang, Y. Zhu, R. G. Geocadin, and N. V. Thakor, “Long range correlations in the heart rate variability following the injury of cardiac arrest,” Physica A, vol. 380, no. 1-2, pp. 250-258, 2007. · doi:10.1016/j.physa.2007.02.078
[3] N. V. Sarlis, E. S. Skordas, and P. A. Varotsos, “Heart rate variability in natural time and 1/f ‘noise’,” Europhysics Letters, vol. 87, no. 1, Article ID 18003, 2009. · doi:10.1209/0295-5075/87/18003
[4] Z. R. Struzik, J. Hayano, R. Soma, S. Kwak, and Y. Yamamoto, “Aging of complex heart rate dynamics,” IEEE Transactions on Biomedical Engineering, vol. 53, no. 1, pp. 89-94, 2006. · doi:10.1109/TBME.2005.859801
[5] U. R. Acharya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, “Heart rate variability: a review,” Medical and Biological Engineering and Computing, vol. 44, no. 12, pp. 1031-1051, 2006. · doi:10.1007/s11517-006-0119-0
[6] J. H. T. Bates, G. N. Maksym, D. Navajas, and B. Suki, “Lung tissue rheology and 1/f noise,” Annals of Biomedical Engineering, vol. 22, no. 6, pp. 674-681, 1994. · doi:10.1007/BF02368292
[7] J. M. Halley and W. E. Kunin, “Extinction risk and the 1/f family of noise models,” Theoretical Population Biology, vol. 56, no. 3, pp. 215-230, 1999. · Zbl 0964.92042 · doi:10.1006/tpbi.1999.1424
[8] M. C. Wichmann, K. Johst, M. Schwager, B. Blasius, and F. Jeltsch, “Extinction risk, coloured noise and the scaling of variance,” Theoretical Population Biology, vol. 68, no. 1, pp. 29-40, 2005. · Zbl 1071.92045 · doi:10.1016/j.tpb.2005.03.001
[9] Z. Yang, L. Hoang, Q. Zhao, E. Keefer, and W. Liu, “1/f neural noise reduction and spike feature extraction using a subset of informative samples,” Annals of Biomedical Engineering, vol. 39, no. 4, pp. 1264-1277, 2011. · doi:10.1007/s10439-010-0201-5
[10] J. Ruseckas and B. Kaulakys, “Tsallis distributions and 1/f noise from nonlinear stochastic differential equations,” Physical Review E, vol. 84, no. 5, Article ID 051125, 7 pages, 2011. · Zbl 0971.81506
[11] F. Beckers, B. Verheyden, and A. E. Aubert, “Aging and nonlinear heart rate control in a healthy population,” American Journal of Physiology, vol. 290, no. 6, pp. H2560-H2570, 2006. · doi:10.1152/ajpheart.00903.2005
[12] B. Pilgram and D. T. Kaplan, “Nonstationarity and 1/f noise characteristics in heart rate,” American Journal of Physiology, vol. 276, no. 1, pp. R1-R9, 1999.
[13] P. Szendro, G. Vincze, and A. Szasz, “Pink-noise behaviour of biosystems,” European Biophysics Journal, vol. 30, no. 3, pp. 227-231, 2001. · doi:10.1007/s002490100143
[14] G. Massiera, K. M. Van Citters, P. L. Biancaniello, and J. C. Crocker, “Mechanics of single cells: rheology, time dependence, and fluctuations,” Biophysical Journal, vol. 93, no. 10, pp. 3703-3713, 2007. · doi:10.1529/biophysj.107.111641
[15] Y. Murase, T. Shimada, N. Ito, and P. A. Rikvold, “Effects of demographic stochasticity on biological community assembly on evolutionary time scales,” Physical Review E, vol. 81, no. 4, Article ID 041908, 14 pages, 2010. · doi:10.1103/PhysRevE.81.041908
[16] T. Yokogawa and T. Harada, “Generality of a power-law long-term correlation in beat timings of single cardiac cells,” Biochemical and Biophysical Research Communications, vol. 387, no. 1, pp. 19-24, 2009. · doi:10.1016/j.bbrc.2009.05.143
[17] T. Harada, T. Yokogawa, T. Miyaguchi, and H. Kori, “Singular behavior of slow dynamics of single excitable cells,” Biophysical Journal, vol. 96, no. 1, pp. 255-267, 2009. · doi:10.1529/biophysj.108.139691
[18] A. Eke, P. Hermán, J. B. Bassingthwaighte et al., “Physiological time series: distinguishing fractal noises from motions,” Pflugers Archiv, vol. 439, no. 4, pp. 403-415, 2000. · doi:10.1007/s004240050957
[19] B. J. West, “Fractal physiology and the fractional calculus: a perspective,” Frontiers in Fractal Physiology, vol. 1, article 12, 2010. · doi:10.3389/fphys.2010.00012
[20] P. Grigolini, G. Aquino, M. Bologna, M. Luković, and B. J. West, “A theory of 1/f noise in human cognition,” Physica A, vol. 388, no. 19, pp. 4192-4204, 2009. · doi:10.1016/j.physa.2009.06.024
[21] F. Grüneis, M. Nakao, Y. Mizutani, M. Yamamoto, M. Meesmann, and T. Musha, “Further study on 1/f fluctuations observed in central single neurons during REM sleep,” Biological Cybernetics, vol. 68, no. 3, pp. 193-198, 1993. · doi:10.1007/BF00224851
[22] H. Sheng, Y.-Q. Chen, and T.-S. Qiu, “Heavy-tailed distribution and local long memory in time series of molecular motion on the cell membrane,” Fluctuation and Noise Letters, vol. 10, no. 1, pp. 93-119, 2011. · Zbl 1271.62210 · doi:10.1142/S0219477511000429
[23] B. J. West and W. Deering, “Fractal physiology for physicists: Lévy statistics,” Physics Report, vol. 246, no. 1-2, pp. 1-100, 1994.
[24] W. Deering and B. J. West, “Fractal physiology,” IEEE Engineering in Medicine and Biology Magazine, vol. 11, no. 2, pp. 40-46, 1992. · doi:10.1109/51.139035
[25] B. J. West, “Physiology in fractal dimensions: error tolerance,” Annals of Biomedical Engineering, vol. 18, no. 2, pp. 135-149, 1990. · doi:10.1007/BF02368426
[26] M. Joyeux, S. Buyukdagli, and M. Sanrey, “1/f Fluctuations of DNA temperature at thermal denaturation,” Physical Review E, vol. 75, no. 6, Article ID 061914, 9 pages, 2007. · doi:10.1103/PhysRevE.75.061914
[27] C. Cattani, “Fractals and hidden symmetries in DNA,” Mathematical Problems in Engineering, vol. 2010, Article ID 507056, 31 pages, 2010. · Zbl 1189.92015 · doi:10.1155/2010/507056
[28] C. Cattani, E. Laserra, and I. Bochicchio, “Simplicial approach to fractal structures,” Mathematical Problems in Engineering, vol. 2012, Article ID 958101, 21 pages, 2012. · Zbl 1264.28005 · doi:10.1155/2012/958101
[29] P. Herman and A. Eke, “Nonlinear analysis of blood cell flux fluctuations in the rat brain cortex during stepwise hypotension challenge,” Journal of Cerebral Blood Flow & Metabolism, vol. 26, no. 9, pp. 1189-1197, 2006. · doi:10.1038/sj.jcbfm.9600266
[30] M. Baumert, V. Baier, and A. Voss, “Long-term correlations and fractal dimension of beat-to-beat blood pressure dynamics,” Fluctuation and Noise Letters, vol. 5, no. 4, pp. L549-L555, 2005. · doi:10.1142/S0219477505003002
[31] C. Cattani, “On the existence of wavelet symmetries in Archaea DNA,” Computational and Mathematical Methods in Medicine, vol. 2012, Article ID 673934, 21 pages, 2012. · Zbl 1234.92014 · doi:10.1155/2012/673934
[32] S. Y. Ponomarev, V. Putkaradze, and T. C. Bishop, “Relaxation dynamics of nucleosomal DNA,” Physical Chemistry Chemical Physics, vol. 11, no. 45, pp. 10633-10643, 2009. · doi:10.1039/b910937b
[33] J. B. Bassingthwaighte, L. S. Liebovitch, and B. J. West, Fractal Physiology, Oxford University Press, 1994.
[34] D. Craciun, A. Isvoran, and N. M. Avram, “Long range correlation of hydrophilicity and flexibility along the calcium binding protein chains,” Physica A, vol. 388, no. 21, pp. 4609-4618, 2009. · doi:10.1016/j.physa.2009.07.042
[35] J. Siódmiak, J. J. Uher, I. Santamaría-Holek, N. Kruszewska, and A. Gadomski, “On the protein crystal formation as an interface-controlled process with prototype ion-channeling effect,” Journal of Biological Physics, vol. 33, no. 4, pp. 313-329, 2007. · doi:10.1007/s10867-008-9076-1
[36] S. C. Kou and X. S. Xie, “Generalized langevin equation with fractional gaussian noise: subdiffusion within a single protein molecule,” Physical Review Letters, vol. 93, no. 18, Article ID 180603, 4 pages, 2004. · doi:10.1103/PhysRevLett.93.180603
[37] H. Sheng, Y.-Q. Chen, and T.-S. Qiu, Fractional Processes and Fractional Order Signal Processing, Springer, 2012.
[38] M. Panella, “Advances in biological time series prediction by neural networks,” Biomedical Signal Processing and Control, vol. 6, no. 2, pp. 112-120, 2011. · doi:10.1016/j.bspc.2010.09.006
[39] Y.-R. Cho and A. Zhang, “Predicting protein function by frequent functional association pattern mining in protein interaction networks,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 1, pp. 30-36, 2010. · doi:10.1109/TITB.2009.2028234
[40] A. Castro, M. A. L. Marques, D. Varsano, F. Sottile, and A. Rubio, “The challenge of predicting optical properties of biomolecules: what can we learn from time-dependent density-functional theory?” Comptes Rendus Physique, vol. 10, no. 6, pp. 469-490, 2009. · doi:10.1016/j.crhy.2008.09.001
[41] Q. Lü, H. J. Wu, J. Z. Wu, et al., “A parallel ant colonies approach to de novo prediction of protein backbone in CASP8/9,” Science China Information Sciences. In press.
[42] B. R. Yang, W. Qu, L. J. Wang, and Y. Zhou, “A new intelligent prediction system model-the compound pyramid model,” Science China Information Sciences, vol. 55, no. 3, pp. 723-736, 2012.
[43] J. L. Suo, X. Y. Ji, and Q. H. Dai, “An overview of computational photography,” Science China Information Sciences, vol. 55, no. 6, pp. 1229-1248, 2012.
[44] A. Papoulis, “A note on the predictability of band-limited processes,” Proceedings of the IEEE, vol. 73, no. 8, pp. 1332-1333, 1985.
[45] S. Y. Chen, C. Y. Yao, G. Xiao, Y. S. Ying, and W. L. Wang, “Fault detection and prediction of clocks and timers based on computer audition and probabilistic neural networks,” in Proceedings of the 8th International Workshop on Artificial Neural Networks, IWANN 2005: Computational Intelligence and Bioinspired Systems, vol. 3512 of Lecture Notes in Computer Science, pp. 952-959, June 2005.
[46] R. J. Lyman, W. W. Edmonson, S. McCullough, and M. Rao, “The predictability of continuous-time, bandlimited processes,” IEEE Transactions on Signal Processing, vol. 48, no. 2, pp. 311-316, 2000.
[47] R. J. Lyman and W. W. Edmonson, “Linear prediction of bandlimited processes with flat spectral densities,” IEEE Transactions on Signal Processing, vol. 49, no. 7, pp. 1564-1569, 2001. · Zbl 1369.94369 · doi:10.1109/78.928709
[48] N. Dokuchaev, “The predictability of band-limited, high-frequency and mixed processes in the presence of ideal low-pass filters,” Journal of Physics A, vol. 41, no. 38, Article ID 382002, 7 pages, 2008. · Zbl 1147.60026 · doi:10.1088/1751-8113/41/38/382002
[49] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series, John Wiley & Sons, 1964. · Zbl 0138.12302
[50] A. N. Kolmogorov, “Interpolation and extrapolation of stationary random sequences,” Izvestiya Akademii Nauk SSSR, vol. 5, pp. 3-14, 1941.
[51] L. A. Zadeh and J. R. Ragazzini, “An extension of Wiener’s theory of prediction,” Journal of Applied Physics, vol. 21, no. 7, pp. 645-655, 1950. · doi:10.1063/1.1699725
[52] R. J. Bhansali, “Asymptotic properties of the Wiener-Kolmogorov predictor. I,” Journal of the Royal Statistical Society B, vol. 36, no. 1, pp. 61-73, 1974. · Zbl 0284.62064
[53] N. Levinson, “A heuristic exposition of Wiener’s mathematical theory of prediction and filtering,” Journal of Mathematical Physics, vol. 26, pp. 110-119, 1947. · Zbl 0036.21502
[54] N. Levinson, “The Wiener RMS (root mean squares) error criterion in filter design and prediction,” Journal of Mathematical Physics, vol. 25, pp. 261-278, 1947.
[55] R. J. Bhansali, “Asymptotic mean-square error of predicting more than one-step ahead using the regression method,” Journal of the Royal Statistical Society C, vol. 23, no. 1, pp. 35-42, 1974.
[56] J. Makhoul, “Linear prediction: a tutorial review,” Proceedings of the IEEE, vol. 63, no. 4, pp. 561-580, 1975.
[57] D. L. Zimmerman and N. Cressie, “Mean squared prediction error in the spatial linear model with estimated covariance parameters,” Annals of the Institute of Statistical Mathematics, vol. 44, no. 1, pp. 27-43, 1992. · Zbl 0760.62090 · doi:10.1007/BF00048668
[58] D. Huang, “Levinson-type recursive algorithms for least-squares autoregression,” Journal of Time Series Analysis, vol. 11, no. 4, pp. 295-315, 2008. · Zbl 0716.62089 · doi:10.1111/j.1467-9892.1990.tb00059.x
[59] R. S. Deo, “Improved forecasting of autoregressive series by weighted least squares approximate REML estimation,” International Journal of Forecasting, vol. 28, no. 1, pp. 39-43, 2012. · doi:10.1016/j.ijforecast.2011.02.014
[60] A. Rodríguez and E. Ruiz, “Bootstrap prediction mean squared errors of unobserved states based on the Kalman filter with estimated parameters,” Computational Statistics & Data Analysis, vol. 56, no. 1, pp. 62-74, 2012. · Zbl 1239.62112 · doi:10.1016/j.csda.2011.07.010
[61] M. Abt, “Estimating the prediction mean squared error in gaussian stochastic processes with exponential correlation structure,” Scandinavian Journal of Statistics, vol. 26, no. 4, pp. 563-578, 1999. · Zbl 0944.60043
[62] R. Kohn and C. F. Ansley, “Prediction mean squared error for state space models with estimated parameters,” Biometrika, vol. 73, no. 2, pp. 467-473, 1986. · Zbl 0603.62102 · doi:10.2307/2336224
[63] R. T. Baillie, “Asymptotic prediction mean squared error for vector autoregressive models,” Biometrika, vol. 66, no. 3, pp. 675-678, 1979. · Zbl 0416.62072 · doi:10.1093/biomet/66.3.675
[64] P. Neelamegam, A. Jamaludeen, and A. Rajendran, “Prediction of calcium concentration in human blood serum using an artificial neural network,” Measurement, vol. 44, no. 2, pp. 312-319, 2011. · doi:10.1016/j.measurement.2010.09.035
[65] E. S. G. Carotti, J. C. De Martin, R. Merletti, and D. Farina, “Compression of multidimensional biomedical signals with spatial and temporal codebook-excited linear prediction,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 11, pp. 2604-2610, 2009. · doi:10.1109/TBME.2009.2027691
[66] W. Bachta, P. Renaud, L. Cuvillon, E. Laroche, A. Forgione, and J. Gangloff, “Motion prediction for computer-assisted beating heart surgery,” IEEE Transactions on Biomedical Engineering, vol. 56, no. 11, pp. 2551-2563, 2009. · doi:10.1109/TBME.2009.2026054
[67] H.-H. Lin, C. L. Beck, and M. J. Bloom, “On the use of multivariable piecewise-linear models for predicting human response to anesthesia,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 11, pp. 1876-1887, 2004. · doi:10.1109/TBME.2004.831541
[68] B. S. Atal, “The history of linear prediction,” IEEE Signal Processing Magazine, vol. 23, no. 2, pp. 154-161, 2006.
[69] R. J. Adler, R. E. Feldman, and M. S. Taqqu, Eds., A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Birkhäuser, Boston, Mass, USA, 1998. · Zbl 0901.00010
[70] G. Samorodnitsky and M. S. Taqqu, Stable Non-Gaussian Random Processes, Chapman & Hall, New York, NY, USA, 1994. · Zbl 0925.60027
[71] B. B. Mandelbrot, Multifractals and 1/f Noise, Springer, 1998.
[72] M. Li and W. Zhao, “On 1/f noise,” Mathematical Problems in Engineering. In press.
[73] G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, McGraw-Hill, 1961. · Zbl 0121.00103
[74] A. Tucker and D. Garway-Heath, “The pseudotemporal bootstrap for predicting glaucoma from cross-sectional visual field data,” IEEE Transactions on Information Technology in Biomedicine, vol. 14, no. 1, pp. 79-85, 2010. · doi:10.1109/TITB.2009.2023319
[75] M. Carlini and S. Castellucci, “Modelling the vertical heat exchanger in thermal basin,” in Proceedings of the International Conference on Computational Science and Its Applications (ICCSA ’11), vol. 6785 of Lecture Notes in Computer Science, pp. 277-286, Springer.
[76] M. Carlini, C. Cattani, and A. Tucci, “Optical modelling of square solar concentrator,” in Proceedings of the International Conference on Computational Science and Its Applications (ICCSA ’11), vol. 6785 of Lecture Notes in Computer Science, pp. 287-295, Springer.
[77] R. J. Bhansali and P. S. Kokoszka, “Prediction of long-memory time series: a tutorial review,” Lecture Notes in Physics, vol. 621, pp. 3-21, 2003. · Zbl 1039.62088
[78] L. Bisaglia and S. Bordignon, “Mean square prediction error for long-memory processes,” Statistical Papers, vol. 43, no. 2, pp. 161-175, 2002. · Zbl 1017.62084 · doi:10.1007/s00362-002-0095-x
[79] M. Li and J.-Y. Li, “On the predictability of long-range dependent series,” Mathematical Problems in Engineering, vol. 2010, Article ID 397454, 9 pages, 2010. · Zbl 1191.62160 · doi:10.1155/2010/397454
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.