Hsiao, Feng-Hsiag Delay-dependent exponential optimal \(H^\infty\) synchronization for nonidentical chaotic systems via neural-network-based approach. (English) Zbl 1261.93050 Abstr. Appl. Anal. 2013, Article ID 294892, 16 p. (2013). Summary: A novel approach is presented to realize the optimal \(H^\infty\) exponential synchronization of non-identical Multiple Time-Delay Chaotic (MTDC) systems via fuzzy control scheme. A Neural-Network (NN) model is first constructed for the MTDC system. Then, a Linear Differential Inclusion (LDI) state-space representation is established for the dynamics of the NN model. Based on this LDI state-space representation, a delay-dependent exponential stability criterion of the error system derived in terms of Lyapunov’s direct method is proposed to guarantee that the trajectories of the slave system can approach those of the master system. Subsequently, the stability condition of this criterion is reformulated into a Linear Matrix Inequality (LMI). According to the LMI, a fuzzy controller is synthesized not only to realize the exponential synchronization but also to achieve the optimal \(H^\infty\) performance by minimizing the disturbance attenuation level at the same time. Finally, a numerical example with simulations is given to demonstrate the effectiveness of our approach. Cited in 2 Documents MSC: 93C42 Fuzzy control/observation systems 93D20 Asymptotic stability in control theory 93B36 \(H^\infty\)-control 92B20 Neural networks for/in biological studies, artificial life and related topics Keywords:optimal \(H^\infty\) performance; delay-dependent exponential stability criterion; \(H^\infty\) exponential synchronization; linear matrix inequality; disturbance attenuation level; Lyapunov’s direct method; linear differential inclusion; LDI state-space representation; neural-network (NN) model; master-slave system; multiple time-delay chaotic (MTDC) system; exponential synchronization; state-space representation; fuzzy controller Software:LMI toolbox PDF BibTeX XML Cite \textit{F.-H. Hsiao}, Abstr. Appl. Anal. 2013, Article ID 294892, 16 p. (2013; Zbl 1261.93050) Full Text: DOI References: [1] Lee, K. R.; Kim, J. H.; Jeung, E. T.; Park, H. B., Output feedback robust H∞ control of uncertain fuzzy dynamic systems with time-varying delay, IEEE Transactions on Fuzzy Systems, 8, 6, 657-664 (2000) [2] Mackey, M. C.; Glass, L., Oscillation and chaos in physiological control systems, Science, 197, 4300, 287-289 (1977) · Zbl 1383.92036 [3] Tsai, Z.-R.; Chang, Y.-Z.; Hwang, J.-D.; Lee, J., Robust fuzzy stabilization of dithered chaotic systems using island-based random optimization algorithm, Information Sciences, 178, 4, 1171-1188 (2008) · Zbl 1139.93010 [4] Hu, C.; Jiang, H.; Teng, Z., General impulsive control of chaotic systems based on a TS fuzzy model, Fuzzy Sets and Systems, 174, 66-82 (2011) · Zbl 1221.93143 [5] Poddar, G.; Chakrabarty, K.; Banerjee, S., Control of chaos in DC-DC converters, IEEE Transactions on Circuits and Systems I, 45, 6, 672-676 (1998) [6] Lin, S. L.; Tung, P. C., A new method for chaos control in communication systems, Chaos, Solitons and Fractals, 42, 5, 3234-3241 (2009) · Zbl 1198.94107 [7] Pecora, L. M.; Carroll, T. L., Synchronization in chaotic systems, Physical Review Letters, 64, 8, 821-824 (1990) · Zbl 0938.37019 [8] Yau, H.-T.; Yan, J.-J., Chaos synchronization of different chaotic systems subjected to input nonlinearity, Applied Mathematics and Computation, 197, 2, 775-788 (2008) · Zbl 1135.65409 [9] Lam, H. K.; Ling, W.-K.; Iu, H. H.-C.; Ling, S. S. H., Synchronization of chaotic systems using time-delayed fuzzy state-feedback controller, IEEE Transactions on Circuits and Systems, 55, 3, 893-903 (2008) [10] Liu, M., Optimal exponential synchronization of general chaotic delayed neural networks: an LMI approach, Neural Networks, 22, 7, 949-957 (2009) · Zbl 1338.93285 [11] Chen, H.-H.; Sheu, G.-J.; Lin, Y.-L.; Chen, C.-S., Chaos synchronization between two different chaotic systems via nonlinear feedback control, Nonlinear Analysis. Theory, Methods & Applications. An International Multidisciplinary Journal. Series A, 70, 12, 4393-4401 (2009) · Zbl 1171.34324 [12] Pourmahmood, M.; Khanmohammadi, S.; Alizadeh, G., Synchronization of two different uncertain chaotic systems with unknown parameters using a robust adaptive sliding mode controller, Communications in Nonlinear Science and Numerical Simulation, 16, 7, 2853-2868 (2011) · Zbl 1221.93131 [13] He, W.; Qian, F.; Cao, J.; Han, Q.-L., Impulsive synchronization of two nonidentical chaotic systems with time-varying delay, Physics Letters A, 375, 3, 498-504 (2011) · Zbl 1241.93025 [14] Li, S.; Xu, W.; Li, R., Synchronization of two different chaotic systems with unknown parameters, Physics Letters A, 361, 1-2, 98-102 (2007) · Zbl 1170.37310 [15] Li, S. Y.; Ge, Z. M., Fuzzy modeling and synchronization of two totally different chaotic systems via novel fuzzy model, IEEE Transactions on Systems, Man, and Cybernetics B, 41, 4, 1015-1026 (2011) [16] Hou, Y.-Y.; Liao, T.-L.; Yan, J.-J., \(H^\infty\) synchronization of chaotic systems using output feedback control design, Physica A. Statistical Mechanics and its Applications, 379, 1, 81-89 (2007) [17] Qi, D.; Liu, M.; Qiu, M.; Zhang, S., Exponential H∞ synchronization of general discrete-time chaotic neural networks with or without time delays, IEEE Transactions on Neural Networks, 21, 8, 1358-1365 (2010) [18] Lin, C. M.; Peng, Y. F.; Lin, M. H., CMAC-based adaptive backstepping synchronization of uncertain chaotic systems, Chaos, Solitons and Fractals, 42, 2, 981-988 (2009) · Zbl 1198.93110 [19] Ahn, C. K.; Jung, S.-T.; Kang, S.-K.; Joo, S.-C., Adaptive \(H^\infty\) synchronization for uncertain chaotic systems with external disturbance, Communications in Nonlinear Science and Numerical Simulation, 15, 8, 2168-2177 (2010) · Zbl 1222.93079 [20] Chuang, C. F.; Wang, W. J.; Chen, Y. J., H∞ synchronization of fuzzy model based chen chaotic systems, 2010 IEEE International Conference on Control Applications, CCA 2010 [21] Karimi, H. R.; Gao, H., New delay-dependent exponential H∞ synchronization for uncertain neural networks with mixed time delays, IEEE Transactions on Systems, Man, and Cybernetics B, 40, 1, 173-185 (2010) [22] Karimi, H. R.; Maass, P., Delay-range-dependent exponential \(H^∞\) synchronization of a class of delayed neural networks, Chaos, Solitons and Fractals, 41, 3, 1125-1135 (2009) · Zbl 1198.93179 [23] Chen, B.-S.; Chiang, C.-H.; Nguang, S. K., Robust \(H^\infty\) synchronization design of nonlinear coupled network via fuzzy interpolation method, IEEE Transactions on Circuits and Systems. I. Regular Papers, 58, 2, 349-362 (2011) · Zbl 1468.93131 [24] Wu, S.-J.; Chiang, H.-H.; Lin, H.-T.; Lee, T.-T., Neural-network-based optimal fuzzy controller design for nonlinear systems, Fuzzy Sets and Systems, 154, 2, 182-207 (2005) · Zbl 1068.93036 [25] Tsai, J. T.; Chou, J. H.; Liu, T. K., Tuning the structure and parameters of a neural network by using hybrid Taguchi-genetic algorithm, IEEE Transactions on Neural Networks, 17, 1, 69-80 (2006) [26] Savran, A., Multifeedback-layer neural network, IEEE Transactions on Neural Networks, 18, 2, 373-384 (2007) [27] Alessandri, A.; Cervellera, C.; Sanguineti, M., Design of asymptotic estimators: an approach based on neural networks and nonlinear programming, IEEE Transactions on Neural Networks, 18, 1, 86-96 (2007) [28] Hsiao, F. H.; Xu, S. D.; Lin, C. Y.; Tsai, Z. R., Robustness design of fuzzy control for nonlinear multiple time-delay large-scale systems via neural-network-based approach, IEEE Transactions on Systems, Man, and Cybernetics B, 38, 1, 244-251 (2008) [29] Patre, P. M.; Bhasin, S.; Wilcox, Z. D.; Dixon, W. E., Composite adaptation for neural network-based controllers, Institute of Electrical and Electronics Engineers. Transactions on Automatic Control, 55, 4, 944-950 (2010) · Zbl 1368.93311 [30] Limanond, S.; Si, J.; Tseng, Y. L., Production data based optimal etch time control design for a reactive ion etching process, IEEE Transactions on Semiconductor Manufacturing, 12, 1, 139-147 (1999) [31] Su, Z.; Khorasani, K., A neural-network-based controller for a single-link flexible manipulator using the inverse dynamics approach, IEEE Transactions on Industrial Electronics, 48, 6, 1074-1086 (2001) [32] Enns, R.; Si, J., Helicopter trimming and tracking control using direct neural dynamic programming, IEEE Transactions on Neural Networks, 14, 4, 929-939 (2003) [33] Shin, D. H.; Kim, Y., Reconfigurable flight control system design using adaptive neural networks, IEEE Transactions on Control Systems Technology, 12, 1, 87-100 (2004) [34] Lin, F. J.; Shieh, H. J.; Shieh, P. H.; Shen, P. H., An adaptive recurrent-neural-network motion controller for X-Y table in CNC machine, IEEE Transactions on Systems, Man, and Cybernetics B, 36, 2, 286-299 (2006) [35] Liaw, H. C.; Shirinzadeh, B.; Smith, J., Robust neural network motion tracking control of piezoelectric actuation systems for micro/nanomanipulation, IEEE Transactions on Neural Networks, 20, 2, 356-367 (2009) [36] Limanond, S.; Si, J., Neural-network-based control design: an LMI approach, IEEE Transactions on Neural Networks, 9, 6, 1422-1429 (1998) [37] Wang, J. J.; Lin, C. T.; Liu, S. H.; Wen, Z. C., Model-based synthetic fuzzy logic controller for indirect blood pressure measurement, IEEE Transactions on Systems, Man, and Cybernetics B, 32, 3, 306-315 (2002) [38] Wai, R. J., Hybrid fuzzy neural-network control for nonlinear motor-toggle servomechanism, IEEE Transactions on Control Systems Technology, 10, 4, 519-532 (2002) [39] Hwang, C. L.; Chang, L. J.; Yu, Y. S., Network-based fuzzy decentralized sliding-mode control for car-like mobile robots, IEEE Transactions on Industrial Electronics, 54, 1, 574-585 (2007) [40] Sant, A. V., PM synchronous motor speed control using hybrid fuzzy-PI with novel switching functions, IEEE Transactions on Magnetics, 45, 10, 4672-4675 (2009) [41] Spatti, D. H.; Da Silva, I. N.; Usida, W. F.; Flauzino, R. A., Fuzzy control system for voltage regulation in power transformers, IEEE Latin America Transactions, 8, 1, 51-57 (2010) [42] Wang, W. J.; Lin, H. R., Fuzzy control design for the trajectory tracking on uncertain nonlinear systems, IEEE Transactions on Fuzzy Systems, 7, 1, 53-62 (1999) [43] Wu, S. J.; Lin, C. T., Discrete-time optimal fuzzy controller design: global concept approach, IEEE Transactions on Fuzzy Systems, 10, 1, 21-38 (2002) [44] Sun, C. H.; Wang, W. J., An improved stability criterion for T-S fuzzy discrete systems via vertex expression, IEEE Transactions on Systems, Man, and Cybernetics B, 36, 3, 672-678 (2006) [45] Lam, H. K.; Seneviratne, L. D., Stability analysis of interval type-2 fuzzy-model-based control systems, IEEE Transactions on Systems, Man, and Cybernetics B, 38, 3, 617-628 (2008) [46] Kiriakidis, K., Fuzzy model-based control of complex plants, IEEE Transactions on Fuzzy Systems, 6, 4, 517-529 (1998) [47] Chen, B. S.; Tseng, C. S.; Uang, H. J., Robustness design of nonlinear dynamic systems via fuzzy linear control, IEEE Transactions on Fuzzy Systems, 7, 5, 571-585 (1999) [48] Chen, B. S.; Tseng, C. S.; Uang, H. J., Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems: an LMI approach, IEEE Transactions on Fuzzy Systems, 8, 3, 249-265 (2000) [49] Cao, Y. Y.; Frank, P. M., Robust H∞ disturbance attenuation for a class of uncertain discrete-time fuzzy systems, IEEE Transactions on Fuzzy Systems, 8, 4, 406-415 (2000) [50] Cao, Y. Y.; Lin, Z., Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation, IEEE Transactions on Fuzzy Systems, 11, 1, 57-67 (2003) [51] Boyd, S.; El Ghaoui, L.; Feron, E.; Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, 15 (1994), Philadelphia, Pa, USA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pa, USA · Zbl 0816.93004 [52] Sun, Y. J., Exponential synchronization between two classes of chaotic systems, Chaos, Solitons and Fractals, 39, 5, 2363-2368 (2009) · Zbl 1197.37007 [53] Gahinet, P.; Nemirovski, A.; Laub, A. J.; Chilali, M., LMI Control Toolbox User’s Guide (1995), Natick, Mass, USA: The MathWorks, Inc., Natick, Mass, USA This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.