×

A spatial version of the Itō-Stratonovich correction. (English) Zbl 1262.60060

We consider a class of stochastic PDEs of Burgers type in spatial dimension one, driven by space-time white noise. Even though it is well known that these equations are well posed, it turns out that, if one performs a spatial discretization of the nonlinearity in the “wrong” way, then the sequence of approximate equations does converge to a limit, but this limit exhibits an additional correction term.
The correction term is proportional to the local quadratic cross-variation of the gradient of the conserved quantity with the solution itself. This can be understood as a consequence of the fact that, for any fixed time, the law of the solution is locally equivalent to Wiener measure, where space palys the role of time. In this sense, the correction term is similar to the usual Itō-Stratonovich correction term that arises when one considers differential temporal discretization of stochastic ODEs.

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35K55 Nonlinear parabolic equations
60H30 Applications of stochastic analysis (to PDEs, etc.)

References:

[1] Adams, R. A. and Fournier, J. J. F. (2003). Sobolev Spaces , 2nd ed. Pure and Applied Mathematics ( Amsterdam ) 140 . Elsevier, Amsterdam. · Zbl 1098.46001
[2] Bertini, L., Cancrini, N. and Jona-Lasinio, G. (1994). The stochastic Burgers equation. Comm. Math. Phys. 165 211-232. · Zbl 0807.60062 · doi:10.1007/BF02099769
[3] Bertini, L. and Giacomin, G. (1997). Stochastic Burgers and KPZ equations from particle systems. Comm. Math. Phys. 183 571-607. · Zbl 0874.60059 · doi:10.1007/s002200050044
[4] Brzeźniak, Z., Capiński, M. and Flandoli, F. (1991). Stochastic partial differential equations and turbulence. Math. Models Methods Appl. Sci. 1 41-59. · Zbl 0741.60058 · doi:10.1142/S0218202591000046
[5] Courant, R., Isaacson, E. and Rees, M. (1952). On the solution of nonlinear hyperbolic differential equations by finite differences. Comm. Pure Appl. Math. 5 243-255. · Zbl 0047.11704 · doi:10.1002/cpa.3160050303
[6] Da Prato, G., Debussche, A. and Temam, R. (1994). Stochastic Burgers’ equation. NoDEA Nonlinear Differential Equations Appl. 1 389-402. · Zbl 0824.35112 · doi:10.1007/BF01194987
[7] Da Prato, G. and Zabczyk, J. (1992). Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications 44 . Cambridge Univ. Press, Cambridge. · Zbl 0761.60052 · doi:10.1017/CBO9780511666223
[8] DeVore, R. A. and Sharpley, R. C. (1993). Besov spaces on domains in \(\mathbf{R}^{d}\). Trans. Amer. Math. Soc. 335 843-864. · Zbl 0766.46015 · doi:10.2307/2154408
[9] Gyöngy, I. (1998). Existence and uniqueness results for semilinear stochastic partial differential equations. Stochastic Process. Appl. 73 271-299. · Zbl 0942.60058 · doi:10.1016/S0304-4149(97)00103-8
[10] Hairer, M. (2009). An introduction to stochastic PDEs. Available at . 0907.4178
[11] Hairer, M. (2011). Singular perturbations to semilinear stochastic heat equations. Probab. Theory Related Fields . To appear. Available at . 1002.3722
[12] Hairer, M. and Voss, J. (2010). Approximations to the stochastic Burgers equation. J. Nonlinear Sci. To appear. Available at . 1005.4438 · Zbl 1273.60004 · doi:10.1007/s00332-011-9104-3
[13] Kwapień, S. and Woyczyński, W. A. (1992). Random Series and Stochastic Integrals : Single and Multiple . Birkhäuser, Boston, MA. · Zbl 0751.60035
[14] Lunardi, A. (1995). Analytic Semigroups and Optimal Regularity in Parabolic Problems. Progress in Nonlinear Differential Equations and Their Applications 16 . Birkhäuser, Basel. · Zbl 0816.35001
[15] Mattheij, R. M. M., Rienstra, S. W. and ten Thije Boonkkamp, J. H. M. (2005). Partial Differential Equations : Modeling , Analysis , Computation . SIAM, Philadelphia, PA. · Zbl 1090.35001
[16] Revuz, D. and Yor, M. (1994). Continuous Martingales and Brownian Motion , 2nd ed. Grundlehren der Mathematischen Wissenschaften [ Fundamental Principles of Mathematical Sciences ] 293 . Springer, Berlin. · Zbl 0804.60001
[17] Wong, E. and Zakai, M. (1965). On the convergence of ordinary integrals to stochastic integrals. Ann. Math. Statist. 36 1560-1564. · Zbl 0138.11201 · doi:10.1214/aoms/1177699916
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.