×

Invasion percolation on the Poisson-weighted infinite tree. (English) Zbl 1262.60091

Authors’ abstract: We study invasion percolation on Aldous’ Poisson-weighted infinite tree, and derive two distinct Markovian representations of the resulting process. One of these is the \(\sigma \rightarrow \infty \) limit of a representation discovered by O. Angel et al. [Ann. Probab. 36, No. 2, 420–466 (2008; Zbl 1145.60050)]. We also introduce an exploration process of a randomly weighted Poisson incipient infinite cluster. The dynamics of the new process are much more straightforward to describe than those of invasion percolation, but it turns out that the two processes have extremely similar behavior. Finally, we introduce two new “stationary” representations of the Poisson incipient infinite cluster as random graphs on \(\mathbb Z\) which are, in particular, factors of a homogeneous Poisson point process on the upper half-plane \(\mathbb{R} \times [0, \infty \)).

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory
60C05 Combinatorial probability
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
05C22 Signed and weighted graphs
05C85 Graph algorithms (graph-theoretic aspects)

Citations:

Zbl 1145.60050
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] Aldous, D. J. and Steele, J. M. (2003). The objective method: Probabilistic combinatorial optimization and local weak convergence. In Probability on Discrete Structures , Encyclopedia of Mathematical Sciences (H. Kesten, ed.) 110 1-72. Springer, Berlin. · Zbl 1037.60008
[2] Angel, O., Goodman, J. and Merle, M. (2009). Scaling limit of the invasion percolation cluster on a regular tree. arXiv: · Zbl 1281.60076
[3] Angel, O., Goodman, J., den Hollander, F. and Slade, G. (2008). Invasion percolation on regular trees. Ann. Appl. Probab. 36 420-466. · Zbl 1145.60050 · doi:10.1214/07-AOP346
[4] Borel, E. (1942). Sur l’emploi du théorème de Bernouilli pour faciliter le calcul d’une infinité de coefficients. Application au problème de l’attente à un guichet. C. R. Acad. Sci. Paris 214 452-456. · Zbl 0026.33002
[5] Chandler, R., Lerman, K., Koplik, J. and Willemsen, J. F. (1982). Capillary displacement and percolation in porous media. J. Fluid Mech. 119 249-267. · Zbl 0491.76090 · doi:10.1017/S0022112082001335
[6] Damron, M., Sapozhnikov, A. and Vágvölgyi, B. (2009). Relations between invasion percolation and critical percolation in two dimensions. Ann. Appl. Probab. 37 2297-2331. · Zbl 1247.60134 · doi:10.1214/09-AOP462
[7] Damron, M. and Sapozhnikov, A. (2011). Outlets of 2D invasion percolation and multiple-armed incipient infinite clusters. Probab. Theory Related Fields 150 257-294. · Zbl 1225.82030 · doi:10.1007/s00440-010-0274-y
[8] Dwass, M. (1962). A fluctuation theorem for cyclic random variables. Ann. Math. Statist. 33 1450-1454. · Zbl 0124.08503 · doi:10.1214/aoms/1177704376
[9] Ferrari, P. A., Landim, C. and Thorisson, H. (2004). Poisson trees, succession lines and coalescing random walks. Ann. Inst. Henri Poincaré B 40 141-152. · Zbl 1042.60064 · doi:10.1016/j.anihpb.2003.12.001
[10] Grimmett, G. R. (1980). Random labelled trees and their branching networks. J. Austral. Math. Soc. Ser. A 30 229-237. · Zbl 0455.05028 · doi:10.1017/S1446788700016517
[11] Gurel-Gurevich, O. and Peled, R. (2011). Poisson thickening. Israel J. Math. · Zbl 1306.60052
[12] Holroyd, A. E. and Peres, Y. (2003). Trees and matchings from point processes. Electron. Commun. Probab. 8 17-27. · Zbl 1060.60048 · doi:10.1214/ECP.v8-1066
[13] Holroyd, A. E., Pemantle, R., Peres, Y. and Schramm, O. (2009). Poisson matching. Ann. Inst. Henri Poincaré B 45 266-287. · Zbl 1175.60012 · doi:10.1214/08-AIHP170
[14] Jarńik, V. (1930). O jistém problému minimálnim. Práce Mor. Přírodověd. Spol. v Brně ( Acta Societ. Scient. Natur. Moravicae ) 6 57-63.
[15] Kesten, H. (1986). Subdiffusive behavior of random walk on a random cluster. Ann. Inst. Henri Poincaré B 22 425-487. · Zbl 0632.60106
[16] Lenormand, R. and Bories, S. (1980). Description d’un mécanisme de connexion de liaison destiné à l’étude du drainage avec piégeage en milieu poreux. Comptes Rendus des Séances de L’Académie des Sciences de Paris , Série B 291 279-282.
[17] McDiarmid, C., Johnson, T. and Stone, H. S. (1997). On finding a minimum spanning tree in a network with random weights. Random Structures Algorithms 10 187-204. · Zbl 0872.60008 · doi:10.1002/(SICI)1098-2418(199701/03)10:1/2<187::AID-RSA10>3.0.CO;2-6
[18] Moon, J. W. (1970). Counting Labelled Trees 1 . Canadian Mathematical Monographs. · Zbl 0214.23204
[19] Newman, C. M. (1997). Topics in Disordered Systems . Birkhäuser, Basel. · Zbl 0897.60093
[20] Prim, R. C. (1957). Shortest connection networks and some generalizations. Bell System Techn. J. 36 1389-1401.
[21] Takács, L. (1967). Combinatorial Methods in the Theory of Stochastic Processes , 1st ed. Wiley, New York, NY. · Zbl 0162.21303
[22] Tanner, J. C. (1961). A derivation of the Borel distribution. Biometrika 48 222-224. · Zbl 0139.35101 · doi:10.1093/biomet/48.1-2.222
[23] Timár, A. (2004). Tree and grid factors for general point processes. Electron. Commun. Probab. 9 53-59. · Zbl 1060.60050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.