×

A vanishing viscosity approach to a rate-independent damage model. (English) Zbl 1262.74030

Summary: We analyze a rate-independent model for damage evolution in elastic bodies. The central quantities are a stored energy functional and a dissipation functional, which is assumed to be positively homogeneous of degree one. Since the energy is not simultaneously (strictly) convex in the damage variable and the displacements, solutions may have jumps as a function of time. The latter circumstance makes it necessary to recur to suitable notions of weak solution. However, the by-now classical concept of global energetic solution fails to describe accurately the behavior of the system at jumps.{ }Hence, we consider rate-independent damage models as limits of systems driven by viscous, rate-dependent dissipation. We use a technique for taking the vanishing viscosity limit, which is based on arclength reparametrization. In this way, in the limit we obtain a novel formulation for the rate-independent damage model, which highlights the interplay of viscous and rate-independent effects in the jump regime, and provides a better description of the energetic behavior of the system at jumps.

MSC:

74R05 Brittle damage
74C05 Small-strain, rate-independent theories of plasticity (including rigid-plastic and elasto-plastic materials)
35D40 Viscosity solutions to PDEs
35K86 Unilateral problems for nonlinear parabolic equations and variational inequalities with nonlinear parabolic operators
49J40 Variational inequalities
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Ambrosio L., Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 19 pp 191– (1995)
[2] Ambrosio L., Oxford Mathematical Monographs, in: Functions of Bounded Variation and Free Discontinuity Problems (2000)
[3] DOI: 10.1007/978-3-540-75914-0
[4] Aubin J.-P., Applied Nonlinear Analysis (1984)
[5] DOI: 10.1137/110823511 · Zbl 1379.74006
[6] DOI: 10.1016/j.anihpc.2007.05.009 · Zbl 1152.35505
[7] DOI: 10.1007/s00161-003-0152-2 · Zbl 1066.74048
[8] DOI: 10.1016/j.jde.2005.04.015 · Zbl 1078.74048
[9] DOI: 10.1007/s00033-007-7064-0 · Zbl 1238.74005
[10] Brezis H., North-Holland, Mathematics Studies, in: Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert (1973)
[11] DOI: 10.1007/PL00001378 · Zbl 1023.46031
[12] DOI: 10.1142/S0218202508002942 · Zbl 1154.49005
[13] DOI: 10.1007/s00205-008-0117-5 · Zbl 1219.35305
[14] DOI: 10.1007/s00526-010-0336-0 · Zbl 1311.74024
[15] DOI: 10.1007/s00526-011-0443-6 · Zbl 1311.74025
[16] Efendiev M., J. Convex Anal. 13 pp 151– (2006)
[17] DOI: 10.1007/s00205-011-0474-3 · Zbl 1281.74005
[18] DOI: 10.1007/s00205-006-0426-5 · Zbl 1098.74006
[19] Frémond M., Adv. Math. Sci. Appl. 16 pp 697– (2006)
[20] DOI: 10.1016/0020-7683(95)00074-7 · Zbl 0910.73051
[21] DOI: 10.1007/s00205-008-0174-9 · Zbl 1222.74014
[22] DOI: 10.1007/s00526-004-0269-6 · Zbl 1068.35189
[23] DOI: 10.1142/9789812795557
[24] DOI: 10.1007/BF01442860 · Zbl 0646.35024
[25] Heinemann C., Adv. Math. Sci. Appl. 21 pp 321– (2011)
[26] DOI: 10.1016/j.jmaa.2011.04.074 · Zbl 1419.74125
[27] DOI: 10.1137/0315035 · Zbl 0361.46037
[28] Ioffe A. D., Studies in Mathematics and its Applications 6, in: Theory of Extremal Problems (1979)
[29] DOI: 10.1007/978-94-017-1957-5
[30] DOI: 10.1142/S0218202508003121 · Zbl 1151.49014
[31] Knees D., Disc. Cont. Dynam. Syst. Ser. S 6 (2013)
[32] DOI: 10.1016/j.physd.2009.02.008 · Zbl 1201.49013
[33] DOI: 10.1142/S0218202511005647 · Zbl 1277.74066
[34] DOI: 10.1007/s00161-003-0120-x · Zbl 1068.74522
[35] A. Mielke, Handbook of Differential Equations, Evolutionary Equations 2, eds. C. Dafermos and E. Feireisl (Elsevier, 2005) pp. 461–559.
[36] A. Mielke, Nonlinear PDEs and Applications. C.I.M.E. Summer School, Cetraro, Italy 2008, eds. L. Ambrosio and G. Savaré (Springer, 2011) pp. 461–559.
[37] DOI: 10.3934/dcds.2009.25.585 · Zbl 1170.49036
[38] DOI: 10.1051/cocv/2010054 · Zbl 1250.49041
[39] DOI: 10.1142/S021820250600111X · Zbl 1094.35068
[40] DOI: 10.1007/s00030-003-1052-7 · Zbl 1061.35182
[41] DOI: 10.1002/(SICI)1097-0312(200005)53:5<525::AID-CPA1>3.0.CO;2-M · Zbl 1021.65047
[42] Rossi R., Ann. Sc. Norm. Super. Pisa Cl. Sci. pp 97– (2008)
[43] DOI: 10.1051/cocv:2006013 · Zbl 1116.34048
[44] DOI: 10.1002/zamm.200900243 · Zbl 1191.35159
[45] Toader R., Boll. Unione Mat. Ital. 2 pp 1– (2009)
[46] DOI: 10.1007/BFb0084935
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.