Reed, Josh; Ward, Amy; Zhan, Dongyuan On the generalized drift Skorokhod problem in one dimension. (English) Zbl 1262.90048 J. Appl. Probab. 50, No. 1, 16-28 (2013). Summary: We show how to write the solution to the generalized drift Skorokhod problem in one-dimension in terms of the supremum of the solution of a tractable unrestricted integral equation (that is, an integral equation with no boundaries). As an application of our result, we equate the transient distribution of a reflected Ornstein-Uhlenbeck (OU) process to the first hitting time distribution of an OU process (that is \(not\) reflected). Then, we use this relationship to approximate the transient distribution of the \(GI/GI/1 + GI\) queue in conventional heavy traffic and the \(M/M/N/N\) queue in a many-server heavy traffic regime. Cited in 4 Documents MSC: 90B22 Queues and service in operations research 90B15 Stochastic network models in operations research 60G17 Sample path properties 60J60 Diffusion processes Keywords:Skorokhod map; reflected Ornstein-Uhlenbeck process; abandonment; queueing PDF BibTeX XML Cite \textit{J. Reed} et al., J. Appl. Probab. 50, No. 1, 16--28 (2013; Zbl 1262.90048) Full Text: DOI Euclid OpenURL References: [1] Alili, L., Patie, P. and Pedersen, J. L. (2010). Representations of the first hitting time density of an Ornstein-Uhlenbeck process. · Zbl 1083.60064 [2] Anantharam, V. and Konstantopoulos, T. (2011). Integral representation of Skorokhod reflection. Proc. Amer. Math. Soc. 139, 2227-2237. · Zbl 1221.60048 [3] Burdzy, K., Kang, W. and Ramanan, K. (2009). The Skorokhod problem in a time-dependent interval. Stoch. Process. Appl. 119, 428-452. · Zbl 1186.60035 [4] Chaleyat-Maurel, M., El Karoui, N. and Marchal, B. (1980). Reflexion discontinue et systèmes stochastiques. Ann. Prob. 8, 1049-1067. · Zbl 0448.60043 [5] Cox, J. T. and Rosler, U. (1984). A duality relation for entrance and exit laws for Markov processes. Stoch. Process. Appl. 16, 141-156. · Zbl 0523.60068 [6] Dupuis, P. and Ishii, H. (1991). On Lipschitz continuity of the solution mapping to the Skorokhod problem, with applications. Stoch. Stoch. Reports 35, 31-62. · Zbl 0721.60062 [7] Fralix, B. H. (2012). On the time-dependent moments of Markovian queues with reneging. Queueing Systems 20pp. · Zbl 1293.60086 [8] Harrison, J. M. and Reiman, M. I. (1981). Reflected Brownian motion on an orthant. Ann. Prob. 9, 302-308. · Zbl 0462.60073 [9] Kruk, Ł., Lehoczky, J., Ramanan, K. and Shreve, S. (2007). An explicit formula for the Skorokhod map on \([0,a]\). Ann. Prob. 35, 1740-1768. · Zbl 1139.60017 [10] Kruk, Ł., Lehoczky, J., Ramanan, K. and Shreve, S. (2008). Double Skorokhod map and reneging real-time queues. In Markov Processes and Related Topics: A Festschrift for Thomas G. Kurtz (Inst. Math. Statist. Collect. 4 ), Institute of Mathematical Statistics, Beachwood, OH, pp. 169-193. · Zbl 1170.60314 [11] Linetsky, V. (2004). Computing hitting time densities for OU and CIR processes: applications to mean-reverting models. J. Comput. Finance 7, 1-22. [12] Pitman, J. and Yor, M. (1981). Bessel processes and infinitely divisible laws. In Stochastic Integrals (Lecture Notes Math. 851 ), Springer, Berlin, pp. 285-370. · Zbl 0469.60076 [13] Ramanan, K. (2006). Reflected diffusions via the extended Skorokhod map. Electron. J. Prob. 36, 934-992. · Zbl 1111.60043 [14] Sigman, K. and Ryan, R. (2000). Continuous-time monotone stochastic recursions and duality. Adv. Appl. Prob. 32, 426-445. · Zbl 0971.60040 [15] Skorokhod, A. V. (1961). Stochastic equations for diffusions in a bounded region. Theoret. Prob. Appl. 6, 264-274. · Zbl 0215.53501 [16] Srikant, R. and Whitt, W. (1996). Simulation run lengths to estimate blocking probabilities. ACM Trans. Model. Comput. Simul. 6, 7-52. · Zbl 1391.90198 [17] Tanaka, H. (1979). Stochastic differential equations with reflecting boundary conditions in convex regions. Hiroshima Math J. 9, 163-177. · Zbl 0423.60055 [18] Ward, A. R. and Glynn, P. W. (2003). A diffusion approximation for a Markovian queue with reneging. Queueing Systems 43, 103-128. · Zbl 1054.60100 [19] Ward, A. R. and Glynn, P. W. (2003). Properties of the reflected Ornstein-Uhlenbeck process. Queueing Systems 44, 109-123. · Zbl 1026.60106 [20] Ward, A. R. and Glynn, P. W. (2005). A diffusion approximation for a \(\textup{GI}/\textup{GI}/1\) queue with balking or reneging. Queueing Systems 50, 371-400. · Zbl 1094.60064 [21] Whitt, W. (1999). Improving service by informing customers about anticipated delays. Manag. Sci. 45, 192-207. · Zbl 1231.90285 [22] Zhang, T. S. (1994). On the strong solutions of one-dimensional stochastic differential equations with reflecting boundary. Stoch. Process. Appl. 50, 135-147. · Zbl 0796.60062 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.