The fundamental theorem of asset pricing under transaction costs. (English) Zbl 1262.91126

Summary: This paper proves the fundamental theorem of asset pricing with transaction costs, when bid and ask prices follow locally bounded càdlàg (right-continuous, left-limited) processes.
The “robust no-free-lunch with vanishing risk condition” (RNFLVR) for simple strategies is equivalent to the existence of a “strictly consistent price system” (SCPS). This result relies on a new notion of admissibility, which reflects future liquidation opportunities. The RNFLVR condition implies that admissible strategies are predictable processes of finite variation.
The Appendix develops an extension of the familiar Stieltjes integral for càdlàg integrands and finite-variation integrators, which is central to modelling transaction costs with discontinuous prices.


91G10 Portfolio theory
91B25 Asset pricing models (MSC2010)
62P05 Applications of statistics to actuarial sciences and financial mathematics
26A45 Functions of bounded variation, generalizations
60H05 Stochastic integrals
Full Text: DOI HAL


[1] Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–654 (1973) · Zbl 1092.91524
[2] Campi, L., Schachermayer, W.: A super-replication theorem in Kabanov’s model of transaction costs. Finance Stoch. 10, 579–596 (2006) · Zbl 1126.91024
[3] Cherny, A.: General arbitrage pricing model. II. Transaction costs. In: Séminaire de Probabilités XL. Lecture Notes in Math., vol. 1899, pp. 447–461. Springer, Berlin (2007) · Zbl 1322.91052
[4] Choulli, T., Stricker, Ch.: Séparation d’une sur- et d’une sousmartingale par une martingale. In: Séminaire de Probabilités, XXXII. Lecture Notes in Math., vol. 1686, pp. 67–72. Springer, Berlin (1998) · Zbl 0912.60065
[5] Dalang, R.C., Morton, A., Willinger, W.: Equivalent martingale measures and no-arbitrage in stochastic securities market models. Stoch. Stoch. Rep. 29, 185–201 (1990) · Zbl 0694.90037
[6] Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994) · Zbl 0865.90014
[7] Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998) · Zbl 0917.60048
[8] Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer Finance. Springer, Berlin, (2006) · Zbl 1106.91031
[9] Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. North-Holland Mathematics Studies, vol. 29. North-Holland, Amsterdam (1978) · Zbl 0494.60001
[10] Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. B. North-Holland Mathematics Studies, vol. 72. North-Holland, Amsterdam (1982)
[11] Dybvig, P.H., Ross, S.A.: Arbitrage. The New Palgrave: A Dictionary of Economics 1, 100–106 (1987)
[12] Galtchouk, L.I.: Optional martingales. Math. USSR Sb. 40, 435–468 (1981) · Zbl 0472.60048
[13] Galtchouk, L.I.: Stochastic integrals with respect to optional semimartingales and random measures. Teor. Veroâtn. Ee Primen. 29, 93–107 (1984) · Zbl 0538.60048
[14] Guasoni, P.: Optimal investment with transaction costs and without semimartingales. Ann. Appl. Probab. 12, 1227–1246 (2002) · Zbl 1016.60065
[15] Guasoni, P., Rásonyi, M., Schachermayer, W.: The fundamental theorem of asset pricing for continuous processes under small transaction costs. Ann. Finance 6, 157–191 (2010) · Zbl 1239.91190
[16] Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979) · Zbl 0431.90019
[17] Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11, 215–260 (1981) · Zbl 0482.60097
[18] Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 288. Springer, Berlin (2003) · Zbl 1018.60002
[19] Jouini, E., Kallal, H.: Martingales and arbitrage in securities markets with transaction costs. J. Econ. Theory 66, 178–197 (1995) · Zbl 0830.90020
[20] Kabanov, Yu.M.: Hedging and liquidation under transaction costs in currency markets. Finance Stoch. 3, 237–248 (1999) · Zbl 0926.60036
[21] Kabanov, Yu.M., Last, G.: Hedging under transaction costs in currency markets: a continuous-time model. Math. Finance 12, 63–70 (2002) · Zbl 1008.91049
[22] Kabanov, Yu.M., Stricker, Ch.: The Harrison-Pliska arbitrage pricing theorem under transaction costs. J. Math. Econ. 35, 185–196 (2001) · Zbl 0986.91012
[23] Kabanov, Yu.M., Stricker, Ch.: A teachers’ note on no-arbitrage criteria. In: Séminaire de Probabilités, XXXV. Lecture Notes in Math., vol. 1755, pp. 149–152. Springer, Berlin (2001) · Zbl 0982.60032
[24] Kabanov, Yu.M., Rásonyi, M., Stricker, Ch.: No-arbitrage criteria for financial markets with efficient friction. Finance Stoch. 6, 371–382 (2002) · Zbl 1026.60051
[25] Kramkov, D.O.: Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Probab. Theory Relat. Fields 105, 459–479 (1996) · Zbl 0853.60041
[26] Kreps, D.M.: Arbitrage and equilibrium in economies with infinitely many commodities. J. Math. Econ. 8, 15–35 (1981) · Zbl 0454.90010
[27] Lenglart, E.: Tribus de Meyer et théorie des processus. In: Séminaire de Probabilité, XIV. Lecture Notes in Math., vol. 784, pp. 500–546. Springer, Berlin (1980) · Zbl 0427.60045
[28] Rásonyi, M.: A remark on the superhedging theorem under transaction costs. In: Séminaire de Probabilités XXXVII. Lecture Notes in Math., vol. 1832, pp. 394–398. Springer, Berlin (2003) · Zbl 1062.91038
[29] Ross, S.A.: Return, risk and arbitrage. In: Friend, I., Bicksler, J. (eds.) Risk and Return in Finance. Ballinger, Cambridge (1977)
[30] Rudin, W.: Principles of Mathematical Analysis, 3rd edn. McGraw-Hill, New York (1976) · Zbl 0346.26002
[31] Schachermayer, W.: Martingale measures for discrete-time processes with infinite horizon. Math. Finance 4, 25–55 (1994) · Zbl 0893.90017
[32] Schachermayer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance 14, 19–48 (2004) · Zbl 1119.91046
[33] Yan, J.-A.: Caractérisation d’une classe d’ensembles convexes de L 1 ou H 1. In: Séminaire de Probabilité, XIV. Lecture Notes in Math., vol. 784, pp. 220–222. Springer, Berlin (1980)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.