×

Closed int soft BCI-ideals and int soft c-BCI-ideals. (English) Zbl 1263.06007

Summary: The aim of this paper is to lay a foundation for providing a soft algebraic tool in considering many problems that contain uncertainties. In order to provide these soft algebraic structures, the notions of closed intersectional soft BCI-ideals and intersectional soft commutative BCI-ideals are introduced, and related properties are investigated. Conditions for an intersectional soft BCI-ideal to be closed are provided. Characterizations of an intersectional soft commutative BCI-ideal are established, and a new intersectional soft c-BCI-ideal from an old one is constructed.

MSC:

06F35 BCK-algebras, BCI-algebras
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. A. Zadeh, “From circuit theory to system theory,” Proceedings of the Institute of Radio Engineers, vol. 50, pp. 856-865, 1962.
[2] L. A. Zadeh, “Fuzzy sets,” Information and Computation, vol. 8, pp. 338-353, 1965. · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[3] L. A. Zadeh, “Toward a generalized theory of uncertainty (GTU)-an outline,” Information Sciences, vol. 172, no. 1-2, pp. 1-40, 2005. · Zbl 1074.94021 · doi:10.1016/j.ins.2005.01.017
[4] D. Molodtsov, “Soft set theory-first results,” Computers & Mathematics with Applications, vol. 37, no. 4-5, pp. 19-31, 1999. · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[5] P. K. Maji, A. R. Roy, and R. Biswas, “An application of soft sets in a decision making problem,” Computers & Mathematics with Applications, vol. 44, no. 8-9, pp. 1077-1083, 2002. · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[6] P. K. Maji, R. Biswas, and A. R. Roy, “Soft set theory,” Computers & Mathematics with Applications, vol. 45, no. 4-5, pp. 555-562, 2003. · Zbl 1032.03525 · doi:10.1016/S0898-1221(03)00016-6
[7] H. Akta\cs and N. \cCa\ugman, “Soft sets and soft groups,” Information Sciences, vol. 177, no. 13, pp. 2726-2735, 2007. · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[8] Y. B. Jun and C. H. Park, “Applications of soft sets in ideal theory of BCK/BCI-algebras,” Information Sciences, vol. 178, no. 11, pp. 2466-2475, 2008. · Zbl 1184.06014 · doi:10.1016/j.ins.2008.01.017
[9] Y. B. Jun, K. J. Lee, and M. S. Kang, “Intersectional soft sets and applications to BCK/BCI-algebras,” Communications of the Korean Mathematical Society. In press. · Zbl 1276.03041
[10] Y. B. Jun, K. J. Lee, and E. H. Roh, “Intersectional soft BCK/BCI-ideals,” Annals of Fuzzy Mathematics and Informatics, vol. 4, no. 1, pp. 1-7, 2012.
[11] N. \cCa\ugman and F. \cCitak, “Soft int-group and its applications to group theory,” Neural Computing & Applications, vol. 21, Supplement 11, pp. S151-S158, 2012.
[12] Y. B. Jun, “Union soft sets with applications in BCK/BCI-algebras,” Submitted to Bulletin of the Korean Mathematical Society. · Zbl 1280.06015
[13] U. Acar, F. Koyuncu, and B. Tanay, “Soft sets and soft rings,” Computers & Mathematics with Applications, vol. 59, no. 11, pp. 3458-3463, 2010. · Zbl 1197.03048 · doi:10.1016/j.camwa.2010.03.034
[14] A. O. Atagün and A. Sezgin, “Soft substructures of rings, fields and modules,” Computers & Mathematics with Applications, vol. 61, no. 3, pp. 592-601, 2011. · Zbl 1217.16041 · doi:10.1016/j.camwa.2010.12.005
[15] N. \cCa\ugman, F. \cCitak, and S. Enginoglu, “FP-soft set theory and its applications,” Annals of Fuzzy Mathematics and Informatics, vol. 2, no. 2, pp. 219-226, 2011.
[16] F. Feng, “Soft rough sets applied to multicriteria group decision making,” Annals of Fuzzy Mathematics and Informatics, vol. 2, no. 1, pp. 69-80, 2011. · Zbl 1301.91010
[17] F. Feng, Y. B. Jun, and X. Zhao, “Soft semirings,” Computers & Mathematics with Applications, vol. 56, no. 10, pp. 2621-2628, 2008. · Zbl 1165.16307 · doi:10.1016/j.camwa.2008.05.011
[18] Y. B. Jun, “Soft BCK/BCI-algebras,” Computers & Mathematics with Applications, vol. 56, no. 5, pp. 1408-1413, 2008. · Zbl 1184.06014 · doi:10.1016/j.ins.2008.01.017
[19] Y. B. Jun, H. S. Kim, and J. Neggers, “Pseudo d-algebras,” Information Sciences, vol. 179, no. 11, pp. 1751-1759, 2009. · Zbl 1179.06008 · doi:10.1016/j.ins.2009.01.021
[20] Y. B. Jun, K. J. Lee, and A. Khan, “Soft ordered semigroups,” Mathematical Logic Quarterly, vol. 56, no. 1, pp. 42-50, 2010. · Zbl 1191.06009 · doi:10.1002/malq.200810030
[21] Y. B. Jun, K. J. Lee, and C. H. Park, “Soft set theory applied to ideals in d-algebras,” Computers & Mathematics with Applications, vol. 57, no. 3, pp. 367-378, 2009. · Zbl 1165.03339 · doi:10.1016/j.camwa.2008.11.002
[22] Y. B. Jun, K. J. Lee, and J. Zhan, “Soft p-ideals of soft BCI-algebras,” Computers & Mathematics with Applications, vol. 58, no. 10, pp. 2060-2068, 2009. · Zbl 1188.06015 · doi:10.1016/j.camwa.2009.07.072
[23] Y. B. Jun and J. Zhan, “Soft ideals of BCK/BCI-algebras based on fuzzy set theory,” International Journal of Computer Mathematics, vol. 88, no. 12, pp. 2502-2515, 2011. · Zbl 1245.06034 · doi:10.1080/00207160.2011.556192
[24] C. H. Park, Y. B. Jun, and M. A. Öztürk, “Soft WS-algebras,” Communications of the Korean Mathematical Society, vol. 23, no. 3, pp. 313-324, 2008. · Zbl 1168.06305 · doi:10.4134/CKMS.2008.23.3.313
[25] S. Z. Song, K. J. Lee, and Y. B. Jun, “Intersectional soft sets applied to subalgebras/ideals in BCK/BCI-algebras,” Submitted to Knowledge-Based Systems. · Zbl 1306.06022
[26] J. Zhan and Y. B. Jun, “Soft BL-algebras based on fuzzy sets,” Computers & Mathematics with Applications, vol. 59, no. 6, pp. 2037-2046, 2010. · Zbl 1189.03067 · doi:10.1016/j.camwa.2009.12.008
[27] J. Meng and X. L. Xin, “Commutative BCI-algebras,” Mathematica Japonica, vol. 37, no. 3, pp. 569-572, 1992. · Zbl 0761.06010
[28] J. Meng, “An ideal characterization of commutative BCI-algebras,” Pusan Kyongnam Mathematical Journal, vol. 9, no. 1, pp. 1-6, 1993.
[29] Y. Huang, BCI-Algebra, Science Press, Beijing, China, 2006.
[30] J. Meng and Y. B. Jun, BCK-algebras, KyungMoon Sa, Seoul, South Korea, 1994. · Zbl 0906.06015
[31] N. \cCa\ugman and S. Engino\uglu, “Soft set theory and uni-int decision making,” European Journal of Operational Research, vol. 207, no. 2, pp. 848-855, 2010. · Zbl 1205.91049 · doi:10.1016/j.ejor.2010.05.004
[32] J. Meng and S. M. Wei, “Periods of elements in BCI-algebras,” Mathematica Japonica, vol. 38, no. 3, pp. 427-431, 1993. · Zbl 0777.06018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.