Teramoto, Yoshiaki; Tomoeda, Kyoko Optimal Korn’s inequality for solenoidal vector fields on a periodic slab. (English) Zbl 1263.35012 Proc. Japan Acad., Ser. A 88, No. 10, 168-172 (2012). Summary: We obtain the best constant in Korn’s inequality for solenoidal vector fields on a periodic slab which vanish on a part of its boundary. To do this we consider the Stokes equations with Dirichlet boundary conditions, following H. Ito [Math. Methods Appl. Sci. 17, No. 7, 525–549 (1994; Zbl 0801.73014); Japan J. Ind. Appl. Math. 16, No. 1, 101–121 (1999; doi:10.1007/BF03167526)]. Cited in 2 Documents MSC: 35A23 Inequalities applied to PDEs involving derivatives, differential and integral operators, or integrals 35B45 A priori estimates in context of PDEs Keywords:best constant; Stokes equations; Dirichlet boundary conditions Citations:Zbl 0801.73014 × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] C. M. Dafermos, Some remarks on Korn’s inequality, Z. Angew. Math. Phys. 19 (1968), 913-920. · Zbl 0169.55904 · doi:10.1007/BF01602271 [2] C. O. Horgan, On Korn’s inequality for incompressible media, SIAM J. Appl. Math. 28 (1975), 419-430. · Zbl 0269.73009 · doi:10.1137/0128036 [3] C. O. Horgan, Inequalities of Korn and Friedrichs in elasticity and potential theory, J. Appl. Math. Phys. (ZAMP) 26 (1975), 155-164. · Zbl 0308.35077 · doi:10.1007/BF01591503 [4] C. O. Horgan and J. K. Knowles, Eigenvalue problems associated with Korn’s inequalities, Arch. Rational Mech. Anal. 40 (1970/71), 384-402. · Zbl 0223.73011 · doi:10.1007/BF00251798 [5] C. O. Horgan and L. E. Payne, On inequalities of Korn, Friedrichs and Babuška-Aziz, Arch. Rational Mech. Anal. 82 (1983), no. 2, 165-179. · Zbl 0512.73017 · doi:10.1007/BF00250935 [6] H. Ito, Best constants in Korn-Poincaré’s inequalities on a slab, Math. Methods Appl. Sci. 17 (1994), no. 7, 525-549. · Zbl 0801.73014 · doi:10.1002/mma.1670170704 [7] H. Ito, Optimal Korn’s inequalities for divergence-free vector fields with application to incompressible linear elastodynamics, Japan J. Indust. Appl. Math. 16 (1999), no. 1, 101-121. · Zbl 1306.74008 · doi:10.1007/BF03167526 [8] L. E. Payne and H. F. Weinberger, On Korn’s inequality, Arch. Rational Mech. Anal. 8 (1961), 89-98. · Zbl 0107.31105 · doi:10.1007/BF00277432 [9] E. I. Ryzhak, Korn’s constant for a parallelepiped with a free face or pair of faces, Math. Mech. Solids 4 (1999), no. 1, 35-55. · Zbl 1001.74560 · doi:10.1177/108128659900400103 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.