×

On subharmonicity for symmetric Markov processes. (English) Zbl 1263.60073

The equivalence of the analytic and probabilistic definitions for subharmonicity is established in the framework of general symmetric Hunt processes on locally compact separable metric spaces. This extends a similar result (for harmonicity), obtained by Z.-Q. Chen [Proc. Am. Math. Soc. 137, No. 10, 3497–3510 (2009; Zbl 1181.60118)]. As a corollary, a strong maximum principle is proved for locally bounded finely continuous subharmonic functions in the space of functions which are locally in the domain of the Dirichlet form.

MSC:

60J45 Probabilistic potential theory
31C05 Harmonic, subharmonic, superharmonic functions on other spaces
31C25 Dirichlet forms
60J25 Continuous-time Markov processes on general state spaces

Citations:

Zbl 1181.60118

References:

[1] R. M. Blumenthal and R. K. Getoor, Markov Processes and Potential Theory, Pure Appl. Math., 29 , Academic Press, New York, London, 1968. · Zbl 0169.49204
[2] K. Bogdan and T. Byczkowski, Potential theory for the \(\alpha\)-stable Schrödinger operator on bounded Lipschitz domains, Studia Math., 133 (1999), 53-92. · Zbl 0923.31003
[3] Z.-Q. Chen, On notions of harmonicity, Proc. Amer. Math. Soc., 137 (2009), 3497-3510. · Zbl 1181.60118 · doi:10.1090/S0002-9939-09-09945-6
[4] Z.-Q. Chen and M. Fukushima, Symmetric Markov Processes, Time Change, and Boundary Theory, London Math. Soc. Monogr. Ser., 35 , Princeton University Press, Princeton, NJ, 2012. · Zbl 1253.60002
[5] Z.-Q. Chen, P. Kim and T. Kumagai, Global heat kernel estimates for symmetric jump processes, Trans. Amer. Math. Soc., 363 (2011), 5021-5055. · Zbl 1234.60088 · doi:10.1090/S0002-9947-2011-05408-5
[6] Z.-Q. Chen and T. Kumagai, Heat kernel estimates for jump processes of mixed types on metric measure spaces, Probab. Theory Related Fields, 140 (2008), 277-317. · Zbl 1131.60076 · doi:10.1007/s00440-007-0070-5
[7] Z.-Q. Chen and T. Kumagai, A priori Hölder estimates, parabolic Harnack principle and heat kernel estimates for diffusions with jumps, Rev. Mat. Iberoam., 26 (2010), 551-589. · Zbl 1200.60065 · doi:10.4171/RMI/609
[8] Z.-Q. Chen, Z.-M. Ma and M. Röckner, Quasi-homeomorphisms of Dirichlet forms, Nagoya Math. J., 136 (1994), 1-15. · Zbl 0811.31002
[9] Z.-Q. Chen and R. Song, Drift transforms and Green function estimates for discontinuous processes, J. Funct. Anal., 201 (2003), 262-281. · Zbl 1031.60071 · doi:10.1016/S0022-1236(03)00087-9
[10] K. L. Chung, Greenian bounds for Markov processes, Potential Anal., 1 (1992), 83-92. · Zbl 1081.60543 · doi:10.1007/BF00249787
[11] E. B. Dynkin, Markov Processes I, II, Grundlehren Math. Wiss., 121 , 122 , Springer-Verlag, Berlin, Heidelberg, New York, 1965.
[12] M. Fukushima, Y. Ōshima and M. Takeda, Dirichlet Forms and Symmetric Markov Processes, de Gruyter, Stud. Math., 19 , Walter de Gruyter & Co., Berlin, 1994.
[13] S. W. He, J. G. Wang and J. A. Yan, Semimartingale Theory and Stochastic Calculus, Science Press, Beijing, New York, 1992. · Zbl 0781.60002
[14] I. W. Herbst and A. D. Sloan, Perturbation of translation invariant positivity preserving semigroups on \(L^2(\Rn)\), Trans. Amer. Math. Soc., 236 (1978), 325-360. · Zbl 0388.47022 · doi:10.2307/1997790
[15] K. Kuwae, On a strong maximum principle for Dirichlet forms, In: Stochastic processes, physics and geometry: new interplays, II (Leipzig, 1999), CMS Conf. Proc., 29 , Amer. Math. Soc., Providence, RI, 2000, pp.,423-429. · Zbl 0974.31006
[16] K. Kuwae, Maximum principles for subharmonic functions via local semi-Dirichlet forms, Canad. J. Math., 60 (2008), 822-874. · Zbl 1160.31007 · doi:10.4153/CJM-2008-036-8
[17] K. Kuwae, On Calabi’s strong maximum principle via local semi-Dirichlet forms, Potential Anal., 37 (2012), no.,4. · Zbl 1269.31007 · doi:10.1007/s11118-011-9266-5
[18] K. Kuwae, Stochastic calculus over symmetric Markov processes without time reversal, Ann. Probab., 38 (2010), 1532-1569. · Zbl 1206.31009 · doi:10.1214/09-AOP516
[19] K. Kuwae and T. Shioya, A topological splitting theorem for weighted Alexandrov spaces, Tohoku Math. J. (2), 63 (2011), 59-76. · Zbl 1219.53044 · doi:10.2748/tmj/1303219936
[20] Z.-M. Ma, R.-C. Zhu and X.-C. Zhu, On notions of harmonicity for non-symmetric Dirichlet form, Sci. China Math., 53 (2010), 1407-1420. · Zbl 1195.31008 · doi:10.1007/s11425-010-4001-z
[21] M. Rao, R. Song and Z. Vondraček, Green function estimates and Harnack inequality for subordinate Brownian motions, Potential Anal., 25 (2006), 1-27. · Zbl 1107.60042 · doi:10.1007/s11118-005-9003-z
[22] M. Ryznar, Estimates of Green function for relativistic \(\alpha\)-stable process, Potential Anal., 17 (2002), 1-23. · Zbl 1004.60047 · doi:10.1023/A:1015231913916
[23] M. Sharpe, General Theory of Markov Processes, Pure Appl. Math., 133 , Academic Press, Boston, MA, 1988. · Zbl 0649.60079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.