×

A study of the number of solutions of the system of the log-likelihood equations for the 3-parameter Weibull distribution. (English) Zbl 1263.62034

In the case of the three parameter Weibull distribution, which plays an important role in life testing and reliability theory, the author considers the system of the log-likelihood equations of the parameters. First, using a solution of the log-likelihood equation on a scale parameter, the shape parameter is derived as a certain form of a function of a location parameter from the log-likelihood equations on a shape and a location parameter. Next, the form of the function of a location parameter and the expression of the form as the location parameter tends to \(-\infty\) are given. Substituting the form into the log-likelihood equation on a shape parameter, the determination of the number of solutions is discussed. Some concrete examples are also given.

MSC:

62F10 Point estimation
62N05 Reliability and life testing
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] L. J. Bain, M. Engelhardt: Statistical Analysis of Reliability and Life-Testing Models, 2nd ed. Marcel Dekker Inc., New York, 1991.
[2] D.R. Cox, D. Oakes: Analysis of Survival Data. Chapman & Hall, London, 1984.
[3] E. Gourdin, P. Hansen, B. Jaumard: Finding maximum likelihood estimators for the three-parameter Weibull distribution. J. Glob. Optim. 5 (1994), 373–397. · Zbl 0807.62021 · doi:10.1007/BF01096687
[4] N. L. Johnson, S. Kotz, N. Balakrishnan: Continuous Univariate Distributions. Vol. 1, 2nd ed. Wiley, Chichester, 1994. · Zbl 0811.62001
[5] R.A. Lockhart, M.A. Stephens: Estimation and Tests of Fit for the Three-Parameter Weibull Distribution. Research Report 92-10 (1993). Department of Mathematics and Statistics, Simon Frasher University, Burnaby. · Zbl 0800.62145
[6] R.A. Lockhart, M.A. Stephens: Estimation and tests of fit for the Three-Parameter Weibull Distribution. J. R. Stat. Soc. (Series B) 56 (1994), 491–500. · Zbl 0800.62145
[7] J.E. Marsden, A. J. Tromba: Vector Calculus, 4th ed. W.H. Freeman, New York, 1996.
[8] J. I. McCool: Inference on Weibull percentiles and shape parameter from maximum likelihood estimates. IEEE Transactions on Reliability R-19 (1970), 2–9. · doi:10.1109/TR.1970.5216370
[9] M. Pike: A suggested method of analysis of a certain class of experiments in carcinogenesis. Biometrics 22 (1966), 142–161. · doi:10.2307/2528221
[10] F. Proschan: Theoretical explanation of observed decreasing failure rate. Technometrics 5 (1963), 375–383. · doi:10.1080/00401706.1963.10490105
[11] H. Qiao, C.P. Tsokos: Estimation of the three parameter Weibull probability distribution. Math. Comput. Simul. 39 (1995), 173–185. · doi:10.1016/0378-4754(95)95213-5
[12] H. Rockette, C.E. Antle, L.A. Klimko: Maximum likelihood estimation with theWeibull model. J. Am. Stat. Assoc. 69 (1974), 246–249. · Zbl 0283.62033 · doi:10.1080/01621459.1974.10480164
[13] R. L. Smith: Maximum likelihood estimation in a class of non-regular cases. Biometrika 72 (1985), 67–90. · Zbl 0583.62026 · doi:10.1093/biomet/72.1.67
[14] R. L. Smith, J.C. Naylor: Statistics of the three-parameter Weibull distribution. Ann. Oper. Res. 9 (1987), 577–587. · doi:10.1007/BF02054756
[15] R. L. Smith, J.C. Naylor: A comparison of maximum likelihood and Bayesian estimators for the three-parameter Weibull distribution. J. R. Stat. Soc., Ser. C 36 (1987), 385–369.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.