zbMATH — the first resource for mathematics

Percolation in the vacant set of Poisson cylinders. (English) Zbl 1263.82027
A Poisson point process is investigated on the space of random lines in \(\mathbb{R}^d\), \(d\geq 3\) where a multiplicative parameter \(u=u(d)\) labels low and high intensity regimes, including a percolation threshold (a critical value \(u_*\) of that parameter). Each line is interpreted as the axis of a bi-infinite cylinder of unit radius. Percolation is studied for the vacant set which is a random set \({\mathcal{V}} \subset \mathbb{R}^d\) not covered by the cylinders. The main question addressed is whether the set \({\mathcal{V}}\) has unbounded connected components , in which case we say that \({\mathcal{V}}\) percolates. Low and high intensity regimes are investigated. In particular, it is proved that in dimensions \(d\geq 3\), \({\mathcal{V}}\) does not percolate for high intensities. It is found that, for \(d\geq 4\), \({\mathcal{V}}\) does percolate at low intensities. Various inspirations follow from the work by A.-S. Sznitman [Ann. Math. (2) 171, No. 3, 2039–2087 (2010; Zbl 1202.60160)] on random interlacements, which share common features with Poisson cylinders. Specifically the infinite-range dependence of the current problem requires some techniques, previously developed by Sznitman.

82B43 Percolation
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60G55 Point processes (e.g., Poisson, Cox, Hawkes processes)
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
Full Text: DOI arXiv
[1] Benjamini I., Jonasson J., Schramm O., Tykesson J.: Visibility to infinity in the hyperbolic plane, despite obstacles. ALEA Lat. Am. J. Probab. Math. Stat. 6, 323–342 (2009) · Zbl 1276.82012
[2] Benjamini I., Schramm O.: Exceptional planes of percolation. Probab. Theory Relat. Fields 111(4), 551–564 (1998) · Zbl 0910.60076 · doi:10.1007/s004400050177
[3] Gouéré J.-B.: Subcritical regimes in the Poisson Boolean model of continuum percolation. Ann. Probab. 36(4), 1209–1220 (2008) · Zbl 1148.60077 · doi:10.1214/07-AOP352
[4] Grimmett G.: Percolation, Grundlehren der Mathematischen Wissenschaften (Fundamental Principles of Mathematical Sciences), vol. 321. 2nd edn. Springer, Berlin (1999)
[5] Meester R., Roy R.: Continuum percolation, Cambridge Tracts in Mathematics, vol. 119. Cambridge University Press, Cambridge (1996) · Zbl 0858.60092
[6] Santaló L.A.: Integral Geometry and Geometric Probability (with a foreword by Mark Kac, Encyclopedia of Mathematics and its Applications, vol. 1). Addison-Wesley Publishing Co., Reading (1976) · Zbl 0342.53049
[7] Schneider R., Weil W.: Stochastic and integral geometry. Probability and its Applications. Springer, New York (2008) · Zbl 1175.60003
[8] Sidoravicius V., Sznitman A.-S.: Connectivity bounds for the vacant set of random interlacements. Ann. Inst. Henri. Poincaré Probab. Stat. 46(4), 976–990 (2010) arXiv:0908.2206 · Zbl 1210.60107 · doi:10.1214/09-AIHP335
[9] Sidoravicius V., Sznitman A.-S.: Percolation for the vacant set of random interlacements. Commun. Pure Appl. Math. 62(6), 831–858 (2009) · Zbl 1168.60036 · doi:10.1002/cpa.20267
[10] Sznitman, A.-S.: Decoupling inequalities and interlacement percolation on G x Z. arXiv:1010.1490 · Zbl 1277.60183
[11] Sznitman A.-S.: On the critical parameter of interlacement percolation in high dimension. Ann. Probab. 39(1), 70–103 (2011) arXiv:1003.1289 · Zbl 1210.60047 · doi:10.1214/10-AOP545
[12] Sznitman A.-S.: Vacant set of random interlacements and percolation. Ann. Math (2) 171(3), 2039–2087 (2010) · Zbl 1202.60160 · doi:10.4007/annals.2010.171.2039
[13] Teixeira A.: On the uniqueness of the infinite cluster of the vacant set of random interlacements. Ann. Appl. Probab. 19(1), 454–466 (2009) · Zbl 1158.60046 · doi:10.1214/08-AAP547
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.