zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modified Chaplygin gas cosmology. (English) Zbl 1263.83077
Summary: Modified Chaplygin gas as an exotic fluid has been introduced by H. B. Benaoum (2002). Essential features of the modified Chaplygin gas as a cosmological model are discussed. Observational constraints on the parameters of the model have been included. The relationship between the modified Chaplygin gas and a homogeneous minimally coupled scalar field is reevaluated by constructing its self-interacting potential. In addition, we study the role of the tachyonic field in the modified Chaplygin gas cosmological model and the mapping between scalar field and tachyonic field is also considered.

83C55Macroscopic interaction of the gravitational field with matter (general relativity)
83F05Relativistic cosmology
Full Text: DOI
[1] S. Perlmutter, G. Aldering, M. Della Valle, et al., “Discovery of a supernova explosion at half the age of the Universe,” Nature, vol. 391, no. 6662, pp. 51-54, 1998. · doi:10.1038/34124
[2] S. Perlmutter, G. Aldering, G. Goldhaber et al., “Measurements of \Omega and \Lambda from 42 high-redshift Supernovae,” Astrophysical Journal Letters, vol. 517, no. 2, part 1, pp. 565-586, 1999.
[3] A. G. Riess, A. V. Filippenko, P. Challis et al., “Observational evidence from supernovae for an accelerating universe and a cosmological constant,” Astronomical Journal, vol. 116, no. 3, pp. 1009-1038, 1998.
[4] A. G. Riess, L.-G. Sirolger, J. Tonry et al., “Type Ia supernova discoveries at z > 1 from the hubble space telescope: evidence for past deceleration and constraints on dark energy evolution,” Astrophysical Journal Letters, vol. 607, no. 2, pp. 665-687, 2004. · doi:10.1086/383612
[5] N. A. Bahcall, J. P. Ostriker, S. Perlmutter, and P. J. Steinhardt, “The cosmic triangle: revealing the state of the universe,” Science, vol. 284, no. 5419, pp. 1481-1488, 1999. · doi:10.1126/science.284.5419.1481
[6] M. Tegmark, M. A. Strauss, M. R. Blanton et al., “Cosmological parameters from SDSS and WMAP,” Physical Review D, vol. 69, no. 10, Article ID 103501, 26 pages, 2004. · doi:10.1103/PhysRevD.69.103501
[7] A. D. Miller, R. Caldwell, M. J. Devlin et al., “A measurement of the angular power spectrum of the cosmic microwave background from l = 100 to 400,” Astrophysical Journal Letters, vol. 524, no. 1, part 2, pp. L1-L4, 1999.
[8] C. L. Bennet, M. Halpern, G. Hinshaw, et al., “First year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results,” The Astrophysical Journal Supplement Series, vol. 148, no. 1, 2003. · doi:10.1086/377253
[9] S. L. Bridle, O. Lahav, J. P. Ostriker, and P. J. Steinhardt, “Precision cosmology? Not just yet...,” Science, vol. 299, no. 5612, pp. 1532-1533, 2003. · doi:10.1126/science.1082158
[10] D. N. Spergel, L. Verde, H. V. Peiris et al., “First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters,” Astrophysical Journal, Supplement Series, vol. 148, no. 1, pp. 175-194, 2003. · doi:10.1086/377226
[11] P. J. E. Peebles and B. Ratra, “The cosmological constant and dark energy,” Reviews of Modern Physics, vol. 75, no. 2, pp. 559-606, 2003. · Zbl 1205.83082 · doi:10.1103/RevModPhys.75.559
[12] B. Ratra and P. J. E. Peebles, “Cosmological consequences of a rolling homogeneous scalar field,” Physical Review D, vol. 37, p. 3406, 1988. · Zbl 1205.83082
[13] R. R. Caldwell, R. Dave, and P. J. Steinhardt, “Cosmological imprint of an energy component with general equation of state,” Physical Review Letters, vol. 80, no. 8, pp. 1582-1585, 1998.
[14] M. Sami and T. Padmanabhan, “Viable cosmology with a scalar field coupled to the trace of the stress tensor,” Physical Review D, vol. 67, no. 8, Article ID 083509, 10 pages, 2003.
[15] C. Armendariz-Picon and V. Mukhanov, “Essentials of k-essence,” Physical Review D, vol. 63, no. 10, Article ID 103510, 10 pages, 2001. · doi:10.1103/PhysRevD.63.103510
[16] T. Chiba, “Tracking k-essence,” Physical Review D, vol. 66, no. 6, Article ID 063514, 4 pages, 2002. · doi:10.1103/PhysRevD.66.063514
[17] R. J. Scherrer, “Purely kinetic k essence as unified dark matter,” Physical Review Letters, vol. 93, no. 1, Article ID 011301, 1 pages, 2004. · doi:10.1103/PhysRevLett.93.011301
[18] A. Sen, “Rolling tachyon,” Journal of High Energy Physics, vol. 04, article 048, 2002. · Zbl 1083.81578
[19] A. Sen, “Time evolution in open string theory,” Journal of High Energy Physics, vol. 07, article 065, 2002.
[20] G. W. Gibbons, “Cosmological evolution of the rolling tachyon,” Physics Letters B, vol. 537, no. 1-2, pp. 1-4, 2002. · Zbl 0995.83084 · doi:10.1016/S0370-2693(02)01881-6
[21] R. R. Caldwell, “A phantom menace? Cosmological consequences of a dark energy component with super-negative equation of state,” Physics Letters, Section B, vol. 545, no. 1-2, pp. 23-29, 2002. · doi:10.1016/S0370-2693(02)02589-3
[22] E. Elizalde, S. Nojiri, and S. D. Odintsov, “Late-time cosmology in a (phantom) scalar-tensor theory: dark energy and the cosmic speed-up,” Physical Review D, vol. 70, no. 4, Article ID 43539, 20 pages, 2004. · doi:10.1103/PhysRevD.70.043539
[23] J. M. Cline, S. Jeon, and G. D. Moore, “The phantom menaced: constraints on low-energy effective ghosts,” Physical Review D, vol. 70, no. 4, Article ID 43543, 4 pages, 2004. · doi:10.1103/PhysRevD.70.043543
[24] A. Kamenshchik, U. Moschella, and V. Pasquier, “An alternative to quintessence,” Physics Letters, Section B, vol. 511, no. 2-4, pp. 265-268, 2001. · Zbl 0969.83556 · doi:10.1016/S0370-2693(01)00571-8
[25] B. Feng, M. Li, Y.-S. Piao, and X. Zhang, “Oscillating quintom and the recurrent universe,” Physics Letters, Section B, vol. 634, no. 2-3, pp. 101-105, 2006. · doi:10.1016/j.physletb.2006.01.066
[26] P. Ho\vrava and D. Minic, “Probable values of the cosmological constant in a holographic theory,” Physical Review Letters, vol. 85, no. 8, pp. 1610-1613, 2000. · doi:10.1103/PhysRevLett.85.1610
[27] M. Rogatko, “Uniqueness theorem for generalized Maxwell electric and magnetic black holes in higher dimensions,” Physical Review D, vol. 70, no. 4, Article ID 044023, 5 pages, 2004. · doi:10.1103/PhysRevD.70.044023
[28] M. C. Bento, O. Bertolami, and A. A. Sen, “The Revival of the unified dark energy-dark matter model?” Physical Review D, vol. 70, Article ID 083519, 2004.
[29] J. C. Fabris, S. V. B. Gon\ccalves, and P. E. De Souza, “Density perturbations in a universe dominated by the Chaplygin gas,” General Relativity and Gravitation, vol. 34, no. 1, pp. 53-63, 2002. · Zbl 1004.85004 · doi:10.1023/A:1015266421750
[30] N. Bili, G. B. Tupper, and R. D. Viollier, “Unification of dark matter and dark energy: the inhomogeneous Chaplygin gas,” Physics Letters, Section B, vol. 535, no. 1-4, pp. 17-21, 2002. · Zbl 0995.83512 · doi:10.1016/S0370-2693(02)01716-1
[31] A. Hayashigaki, “Chaplygin-like gas and branes in black hole bulks,” Physics Letters, Section B, vol. 487, no. 1-2, pp. 7-13, 2000. · Zbl 0961.83024 · doi:10.1016/S0370-2693(00)00805-4
[32] R. Jackiw, “A particle field theorist’s lectures on supersymmetric, non-Abelian fluid mechanics and d-branes,” http://arxiv.org/abs/physics/0010042.
[33] N. Ogawa, “Remark on the classical solution of the Chaplygin gas as d-branes,” Physical Review D, vol. 62, no. 8, Article ID 085023, 8 pages, 2000.
[34] H. B. Benaoum, “Accelerated universe from modified chaplygin gas and tachyonic fluid,” http://arxiv.org/abs/hep-th/0205140.
[35] J. Lu, L. Xu, J. Li, B. Chang, Y. Gui, and H. Liu, “Constraints on modified Chaplygin gas from recent observations and a comparison of its status with other models,” Physics Letters, Section B, vol. 662, no. 2, pp. 87-91, 2008. · doi:10.1016/j.physletb.2008.03.005
[36] J. Lu, L. Xu, Y. Wu, and M. Liu, “Combined constraints on modified Chaplygin gas model from cosmological observed data: markov Chain Monte Carlo approach,” General Relativity and Gravitation, vol. 43, no. 3, pp. 819-832, 2011. · Zbl 1213.83153 · doi:10.1007/s10714-010-1103-4
[37] L. Xu, Y. Wang, and H. Noh, “Modified Chaplygin gas as a unified dark matter and dark energy model and cosmic constraints,” European Physical Journal C, vol. 72, no. 3, article 1931, 2012. · doi:10.1140/epjc/s10052-012-1931-3
[38] P. Thakur, S. Ghose, and B. C. Paul, “Modified Chaplygin gas and constraints on its B parameter from cold dark matter and unified dark matter energy cosmological models,” Monthly Notices of the Royal Astronomical Society, vol. 397, no. 4, pp. 1935-1939, 2009. · doi:10.1111/j.1365-2966.2009.15015.x
[39] B. C. Paul, P. Thakur, and A. Saha, “Modified Chaplygin gas in Horava-Lifshitz gravity and constraints on its B parameter,” Physical Review D, vol. 85, no. 2, Article ID 024039, 9 pages, 2012. · doi:10.1103/PhysRevD.85.024039
[40] J. C. Fabris, H. E. S. Velten, C. Ogouyandjou, and J. Tossa, “Ruling out the Modified Chaplygin Gas cosmologies,” Physics Letters, Section B, vol. 694, no. 4-5, pp. 289-293, 2011. · doi:10.1016/j.physletb.2010.10.022
[41] J. D. Barrow, “Graduated inflationary universes,” Physics Letters B, vol. 235, no. 1-2, pp. 40-43, 1990. · doi:10.1016/0370-2693(90)90093-L
[42] J. D. Barrow and P. Saich, “Scalar-field cosmologies,” Classical and Quantum Gravity, vol. 10, no. 2, pp. 279-283, 1993. · doi:10.1088/0264-9381/10/2/009
[43] A. A. Starobinsky, “How to determine an effective potential for a variable cosmological term,” JETP Letters, vol. 68, no. 10, pp. 757-763, 1998. · doi:10.1134/1.567941
[44] D. Huterer and M. S. Turner, “Prospects for probing the dark energy via supernova distance measurements,” Physical Review D, vol. 60, no. 8, Article ID 081301, 5 pages, 1999. · doi:10.1103/PhysRevD.60.081301
[45] T. Nakamura and T. Chiba, “Determining the equation of state of the expanding Universe: inverse problem in cosmology,” Monthly Notices of the Royal Astronomical Society, vol. 306, no. 3, pp. 696-700, 1999.
[46] T. Padmanabhan, “Accelerated expansion of the universe driven by tachyonic matter,” Physical Review D, vol. 66, no. 2, Article ID 021301, 4 pages, 2002. · doi:10.1103/PhysRevD.66.021301
[47] V. Gorini, A. Kamenshchik, U. Moschella, and V. Pasquier, “Tachyons, scalar fields, and cosmology,” Physical Review D, vol. 69, no. 12, Article ID 123512, 16 pages, 2004. · Zbl 1111.83028 · doi:10.1103/PhysRevD.69.123512