×

Weak sharp minima in set-valued optimization problems. (English) Zbl 1263.90085

Summary: We introduce the notion of a weak \(\psi \)-sharp minimizer for set-valued optimization problems. We present some sufficient and necessary conditions that a pair point is a weak \(\psi \)-sharp minimizer through the outer limit of a set-valued map and develop the characterization of the weak \(\psi \)-sharp minimizer in terms of a generalized nonlinear scalarization function. These results extend the corresponding ones by M. Studniarski [Control Cybern. 36, No. 4, 925–937 (2007; Zbl 1227.90036)].

MSC:

90C29 Multi-objective and goal programming
90C46 Optimality conditions and duality in mathematical programming

Citations:

Zbl 1227.90036
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. C. Ferris, Weak sharp minima and penalty functions in mathematical programming [Ph.D. thesis], Universiy of Cambridge, Cambridge, UK, 1988.
[2] B. T. Polyak, “Sharp minima, Institue of control sciences lecture notes, Moscow,” in Presented at the IIASA Workshop Om Generalized Lagrangians and Their Applications, IIASA, Laxenburg, Austria, 1979.
[3] R. Henrion and J. Outrata, “A subdifferential condition for calmness of multifunctions,” Journal of Mathematical Analysis and Applications, vol. 258, no. 1, pp. 110-130, 2001. · Zbl 0983.49010 · doi:10.1006/jmaa.2000.7363
[4] A. S. Lewis and J. S. Pang, “Eror bounds for convex inequality systems,” in Proceedings of the 5th symposium on generalized convexity, J. P. Crouzeix, Ed., Marseille, France, 1996.
[5] J. V. Burke and M. C. Ferris, “Weak sharp minima in mathematical programming,” SIAM Journal on Control and Optimization, vol. 31, no. 5, pp. 1340-1359, 1993. · Zbl 0791.90040 · doi:10.1137/0331063
[6] J. V. Burke and S. Deng, “Weak sharp minima revisited. I. Basic theory,” Control and Cybernetics, vol. 31, no. 3, pp. 439-469, 2002. · Zbl 1105.90356
[7] J. V. Burke and S. Deng, “Weak sharp minima revisited. II. Application to linear regularity and error bounds,” Mathematical Programming B, vol. 104, no. 2-3, pp. 235-261, 2005. · Zbl 1124.90349 · doi:10.1007/s10107-005-0615-2
[8] J. V. Burke and S. Deng, “Weak sharp minima revisited. III. Error bounds for differentiable convex inclusions,” Mathematical Programming B, vol. 116, no. 1-2, pp. 37-56, 2009. · Zbl 1163.90016 · doi:10.1007/s10107-007-0130-8
[9] S. Deng and X. Q. Yang, “Weak sharp minima in multicriteria linear programming,” SIAM Journal on Optimization, vol. 15, no. 2, pp. 456-460, 2004. · Zbl 1114.90111 · doi:10.1137/S1052623403434401
[10] X. Y. Zheng and X. Q. Yang, “Weak sharp minima for piecewise linear multiobjective optimization in normed spaces,” Nonlinear Analysis: Theory, Methods & Applications, vol. 68, no. 12, pp. 3771-3779, 2008. · Zbl 1191.90064 · doi:10.1016/j.na.2007.04.018
[11] E. M. Bednarczuk, “Weak sharp efficiency and growth condition for vector-valued functions with applications,” Optimization, vol. 53, no. 5-6, pp. 455-474, 2004. · Zbl 1153.90529 · doi:10.1080/02331930412331330478
[12] M. Studniarski, “Weak sharp minima in multiobjective optimization,” Control and Cybernetics, vol. 36, no. 4, pp. 925-937, 2007. · Zbl 1227.90036
[13] S. Xu and S. J. Li, “Weak \psi -sharp minima in vector optimization problems,” Fixed Point Theory and Applications, vol. 2010, Article ID 154598, 10 pages, 2010. · Zbl 1200.49024 · doi:10.1155/2010/154598
[14] M. Durea and R. Strugariu, “Necessary optimality conditions for weak sharp minima in set-valued optimization,” Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 7, pp. 2148-2157, 2010. · Zbl 1225.90115 · doi:10.1016/j.na.2010.05.041
[15] B. Jiménez, “Strict efficiency in vector optimization,” Journal of Mathematical Analysis and Applications, vol. 265, no. 2, pp. 264-284, 2002. · Zbl 1010.90075 · doi:10.1006/jmaa.2001.7588
[16] F. Flores-Bazán and B. Jiménez, “Strict efficiency in set-valued optimization,” SIAM Journal on Control and Optimization, vol. 48, no. 2, pp. 881-908, 2009. · Zbl 1201.90179 · doi:10.1137/07070139X
[17] E. Bednarczuk, “Stability analysis for parametric vector optimization problems,” Dissertationes Mathematicae, vol. 442, pp. 1-126, 2006. · Zbl 1123.49020 · doi:10.4064/dm442-0-1
[18] E. Hernández and L. Rodríguez-Marín, “Nonconvex scalarization in set optimization with set-valued maps,” Journal of Mathematical Analysis and Applications, vol. 325, pp. 1-18, 2007. · Zbl 1110.90080 · doi:10.1016/j.jmaa.2006.01.033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.