Fiorilli, Daniel Residue classes containing an unexpected number of primes. (English) Zbl 1264.11081 Duke Math. J. 161, No. 15, 2923-2943 (2012). Fix a non-zero integer \(a\), and positive real numbers \(B\) and \(\varepsilon\). For any \(M\in [1,(\log x)^B]\) let \(\mathcal{Q}\) be the set of moduli \(q\leq x/M\) which are coprime to \(a\). The main result of the paper is then that \[ \frac{1}{\# \mathcal{Q}}\sum_{q\in\mathcal{Q}} \left(\psi(x;q,a)-\frac{\psi(x)}{\phi(q)}\right)=\nu(a,M)+ O_{a,B,\varepsilon}(M^{\varepsilon-205/538}), \] for a certain \(\nu(a,M)\). Thus \(\psi(x;q,a)\) differs from its expected value \(\psi(x)/\phi(q)\) on average, by an amount \(\nu(a,M)\). If \(a\) were a positive prime power one might expect to have \(\nu(a,M)=\Lambda(a)\), so as to allow for the fact that the term \(\Lambda(a)\) is necessarily counted by \(\psi(x;q,a)\). However in fact it is shown that \(\nu(a,M)=\frac32\Lambda(a)\) whenever \(a\geq 2\). Similarly one has \(\nu(a,M)=\frac12\Lambda(|a|)\) if \(a\leq -2\); while if \(a=\pm 1\) one has \(\nu(\pm 1,M)=-\frac12\log M-C\) for a certain explicitly given constant \(C\).The discrepancy between \(\psi(x;q,a)\) and its “expected” value, as revealed by these results, is a very small, and corresponds to less than one prime for each modulus \(q\); but it is non-zero none the less.For the proof one uses a deep result of J. Friedlander, A. Granville, A. Hildebrand and H. Maier [J. Am. Math. Soc. 4, No. 1, 25–86 (1991; Zbl 0724.11040)], which shows that moduli \(q\leq xM^{-2}\) make a negligible contribution. The remaining moduli are then handled by replacing \(q\) by its “complementary divisor” in the usual way. Reviewer: D. R. Heath-Brown (Oxford) Cited in 3 ReviewsCited in 8 Documents MSC: 11N13 Primes in congruence classes Keywords:primes; congruence class; average; discrepancy Citations:Zbl 0724.11040 × Cite Format Result Cite Review PDF Full Text: DOI arXiv Euclid References: [1] E. Bombieri, On the large sieve , Mathematika 12 (1965), 201-225. · Zbl 0136.33004 · doi:10.1112/S0025579300005313 [2] E. Bombieri, J. B. Friedlander, and H. Iwaniec, Primes in arithmetic progressions to large moduli , Acta Math. 156 (1986), 203-251. · Zbl 0588.10042 · doi:10.1007/BF02399204 [3] D. Fiorilli, The influence of the first term of an arithmetic progression , to appear in Proc. Lond. Math. Soc. (3), preprint, 1104.2542v1 · Zbl 1348.11066 [4] D. Fiorilli and S. J. Miller, Surpassing the ratios conjecture in the \(1\)-level density of Dirichlet \(L\)-functions , preprint, [math.NT] 1111.3896 [5] É. Fouvry, Sur le problème des diviseurs de Titchmarsh , J. Reine Angew. Math. 357 (1985), 51-76. · Zbl 0547.10039 · doi:10.1515/crll.1985.357.51 [6] J. B. Friedlander and A. Granville, “Relevance of the residue class to the abundance of primes” in Proceedings of the Amalfi Conference on Analytic Number Theory (Maiori, 1989) , Univ. Salerno, Salerno, 1992, 95-103. · Zbl 0795.11040 [7] J. B. Friedlander, A. Granville, A. Hildebrand, and H. Maier, Oscillation theorems for primes in arithmetic progressions and for sifting functions , J. Amer. Math. Soc. 4 (1991), 25-86. · Zbl 0724.11040 · doi:10.2307/2939254 [8] C. Hooley, On the Barban-Davenport-Halberstam theorem, I , J. Reine Angew. Math. 274/275 (1975), 206-223. · Zbl 0304.10027 · doi:10.1515/crll.1975.274-275.206 [9] M. N. Huxley, Exponential sums and the Riemann zeta function, V , Proc. Lond. Math. Soc. (3) 90 (2005), 1-41. · Zbl 1083.11052 · doi:10.1112/S0024611504014959 [10] Y. V. Linnik, The Dispersion Method in Binary Additive Problems (in Russian), Izdat. Leningrad Univ., Leningrad, 1961. · Zbl 0099.03104 [11] H. L. Montgomery, Primes in arithmetic progressions , Michigan Math. J. 17 (1970), 33-39. · Zbl 0209.34804 · doi:10.1307/mmj/1029000373 [12] G. Tenenbaum, Introduction à la théorie analytique et probabiliste des nombres , Deuxième édition, Cours Spécialisés 1 , Soc. Math. France, Paris, 1995. · Zbl 0880.11001 [13] A. I. Vinogradov, The density hypothesis for Dirichlet \(L\)-series (in Russian), Izv. Akad. Nauk Ser. Mat. 29 (1965), 903-934. · Zbl 0128.04205 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.