×

zbMATH — the first resource for mathematics

The minimal model for the Batalin-Vilkovisky operad. (English) Zbl 1264.18010
Authors’ abstract: The purpose of this paper is to explain and to generalize, in a homotopical way, the result of Barannikov-Kontsevich and Manin, which states that the underlying homology groups of some Batalin-Vilkovisky algebras carry a Frobenius manifold structure. To this extent, we first make the minimal model for the operad encoding BV-algebras explicit. Then, we prove a homotopy transfer theorem for the associated notion of homotopy BV-algebra. The final result provides an extension of the action of the homology of some BV-algebras to an action via higher homotopical operations organized by the cohomology of the open moduli space of genus zero curves. Applications in Poisson geometry and Lie algebra cohomology and to the mirror symmetry conjecture are given.

MSC:
18D50 Operads (MSC2010)
18G55 Nonabelian homotopical algebra (MSC2010)
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
55P48 Loop space machines and operads in algebraic topology
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Apostolov V., Gualtieri M.: Generalized Kähler manifolds, commuting complex structures, and split tangent bundles. Commun. Math. Phys. 271(2), 561–575 (2007) · Zbl 1135.53018 · doi:10.1007/s00220-007-0196-4
[2] Barannikov S.: Non-commutative periods and mirror symmetry in higher dimensions. Commun. Math. Phys 228(2), 281–325 (2002) · Zbl 1010.32011 · doi:10.1007/s002200200656
[3] Bousfield A.K., Curtis E.B., Kan D.M., Quillen D.G., Rector D.L., Schlesinger J.W.: The mod-p lower central series and the Adams spectral sequence. Topology 5, 331–342 (1966) · Zbl 0158.20502 · doi:10.1016/0040-9383(66)90024-3
[4] Beilinson, A., Drinfeld, V.: Chiral Algebras, American Mathematical Society Colloquium Publications, vol. 51. American Mathematical Society, Providence, RI (2004) · Zbl 1138.17300
[5] Bellier, O.: Koszul duality of operads over a Hopf algebra (work in progress) (2011) · Zbl 1296.18009
[6] Berglund, A.: Homological perturbation theory for algebras over operads. arXiv:0909.3485 (2009) · Zbl 1305.18030
[7] Barannikov S., Kontsevich M.: Frobenius manifolds and formality of Lie algebras of polyvector fields. Int. Math. Res. Not. 4, 201–215 (1998) · Zbl 0914.58004 · doi:10.1155/S1073792898000166
[8] Berger C., Moerdijk I.: Axiomatic homotopy theory for operads. Comment. Math. Helv. 78(4), 805–831 (2003) · Zbl 1041.18011 · doi:10.1007/s00014-003-0772-y
[9] Brylinski J.-L.: A differential complex for Poisson manifolds. J. Differ. Geom. 28(1), 93–114 (1988) · Zbl 0634.58029
[10] Batalin I.A., Vilkovisky G.A.: Gauge algebra and quantization. Phys. Lett. B 102(1), 27–31 (1981) · doi:10.1016/0370-2693(81)90205-7
[11] Cavalcanti, G.R.: New aspects of the ddc-lemma. arXiv:math/0501406 (2005)
[12] Cavalcanti G.R.: Formality in generalized Kähler geometry. Topol. Appl. 154(6), 1119–1125 (2007) · Zbl 1123.53014 · doi:10.1016/j.topol.2006.11.002
[13] Carr M.P., Devadoss S.L.: Coxeter complexes and graph-associahedra. Topol. Appl. 153(12), 2155–2168 (2006) · Zbl 1099.52001 · doi:10.1016/j.topol.2005.08.010
[14] Costello, K., Gwilliam, O.: Factorization algebras in perturbative quantum field theory. Available on the home pages of the authors (2011)
[15] Cao, H.-D., Zhou, J.: DGBV algebras and mirror symmetry. In: First International Congress of Chinese Mathematicians (Beijing, 1998), AMS/IP Studies in Advances Mathematics, vol. 20. American Mathematical Soceity, Providence, RI, pp. 279–289 (2001) · Zbl 1065.14051
[16] Drummond-Cole, G.: Homotopically trivializing the circle in the framed little disks. arXiv:1112.1129 (2011) · Zbl 1301.55005
[17] Drummond-Cole, G.: Formal formality of the hypercommutative algebras of low dimensional Calabi–Yau varieties. arXiv:1201.6111 (2012)
[18] De Concini C., Procesi C.: Wonderful models of subspace arrangements. Selecta Math. N.S. 1(3), 459–494 (1995) · Zbl 0842.14038 · doi:10.1007/BF01589496
[19] Drummond-Cole G., Vallette B.: operads, BV and hypercommutative Oberwolfach Rep 28, 1566–1569 (2009)
[20] Devadoss S., Forcey S.: Marked tubes and the graph multiplihedron. Algebr. Geom. Topol. 8(4), 2081–2108 (2008) · Zbl 1160.52007 · doi:10.2140/agt.2008.8.2081
[21] Deligne P., Griffiths P., Morgan J., Sullivan D.: Real homotopy theory of Kähler manifolds. Invent. Math. 29(3), 245–274 (1975) · Zbl 0312.55011 · doi:10.1007/BF01389853
[22] Dotsenko, V., Khoroshkin, A.: Free resolutions via Gröbner bases. ArXiv e-prints (2009) · Zbl 1278.18018
[23] Dotsenko V., Khoroshkin A.: Gröbner bases for operads. Duke Math. J. 153(2), 363–396 (2010) · Zbl 1208.18007 · doi:10.1215/00127094-2010-026
[24] Galvez-Carrillo, I., Tonks, A., Vallette, B.: Homotopy Batalin–Vilkovisky algebras, J. Noncommut. Geom. arXiv:0907.2246 (2011, to appear)
[25] Getzler E.: Batalin–Vilkovisky algebras and two-dimensional topological field theories. Commun. Math. Phys. 159(2), 265–285 (1994) · Zbl 0807.17026 · doi:10.1007/BF02102639
[26] Getzler E.: Two-dimensional topological gravity and equivariant cohomology. Commun. Math. Phys. 163(3), 473–489 (1994) · Zbl 0806.53073 · doi:10.1007/BF02101459
[27] Getzler, E.: Operads and Moduli Spaces of Genus 0 Riemann Surfaces. The Moduli Space of Curves (Texel Island, 1994). Progress in Mathematics, vol. 129, pp. 199–230. Birkhäuser Boston, Boston, MA (1995) · Zbl 0851.18005
[28] Givental, A.B.: Gromov–Witten invariants and quantization of quadratic Hamiltonians, Mosc. Math. J. 1(4), 551–568, 645. Dedicated to the memory of I.G. Petrovskii on the occasion of his 100th anniversary (2001) · Zbl 1008.53072
[29] Givental A.B.: Semisimple Frobenius structures at higher genus. Internat. Math. Res. Not. 23, 1265–1286 (2001) · Zbl 1074.14532 · doi:10.1155/S1073792801000605
[30] Getzler, E., Jones, J.D.S.: Operads, homotopy algebra and iterated integrals for double loop spaces. hep-th/9403055 (1994)
[31] Granåker, J.: Strong homotopy properads. Int. Math. Res. Not. IMRN 14 (2007) · Zbl 1135.18003
[32] Ginzburg V., Schedler T.: Differential operators and BV structures in noncommutative geometry. Selecta Math. N.S. 16(4), 673–730 (2010) · Zbl 1268.18005 · doi:10.1007/s00029-010-0029-8
[33] Gualtieri, M.: Generalized complex geometry. arXiv:math/0401221 (2004) · Zbl 1079.53106
[34] Hinich V.: Homological algebra of homotopy algebras. Commun. Algebra 25(10), 3291–3323 (1997) · Zbl 0894.18008 · doi:10.1080/00927879708826055
[35] Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence, RI (2003) · Zbl 1017.55001
[36] Hitchin N.: Generalized Calabi–Yau manifolds. Q. J. Math. 54(3), 281–308 (2003) · Zbl 1076.32019 · doi:10.1093/qmath/hag025
[37] Hoefel, E., Livernet, M.: OCHA and Leibniz pairs, towards a Koszul duality. arXiv:math/1104.3607 (2011)
[38] Hirsh, J., Millès, J.: Curved Koszul duality theory, arXiv.org:1008.5368 (2010, to appear Math. Ann.)
[39] Hoffbeck E.: A Poincaré–Birkhoff–Witt criterion for Koszul operads. Manuscripta Math. 131(1–2), 87–110 (2010) · Zbl 1207.18009 · doi:10.1007/s00229-009-0303-2
[40] Kontsevich M., Manin Yu.: Gromov–Witten classes, quantum cohomology, and enumerative geometry. Comm. Math. Phys. 164(3), 525–562 (1994) · Zbl 0853.14020 · doi:10.1007/BF02101490
[41] Khoroshkin, A., Markarian, N., Shadrin, S.: On quasi-isomorphism of hycom and bv/\(\delta\) (2011, in preparation)
[42] Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, vols. 1, 2, pp. 120–139 (Zürich, 1994) Birkhäuser, Basel (1995) · Zbl 0846.53021
[43] Kontsevich M.: Deformation quantization of Poisson manifolds. Lett. Math. Phys. 66(3), 157–216 (2003) · Zbl 1058.53065 · doi:10.1023/B:MATH.0000027508.00421.bf
[44] Koszul, J.-L.: Crochet de Schouten–Nijenhuis et cohomologie, Astérisque (1985) Numero Hors Serie, The Mathematical Heritage of Élie Cartan, Lyon, pp. 257–271 (1984)
[45] Kodaira K., Spencer D.C.: On deformations of complex analytic structures. I, II. Ann. Math. 2(67), 328–466 (1958) · Zbl 0128.16901 · doi:10.2307/1970009
[46] Kodaira K., Spencer D.C.: On deformations of complex analytic structures. III. Stability theorems for complex structures. Ann. Math. 71, 43–76 (1960) · Zbl 0128.16902 · doi:10.2307/1969879
[47] Li, Y.: On deformations of generalized complex structures: the generalized Calabi–Yau case. arXiv:hep-th/0508030 (2005)
[48] Lichnerowicz A.: Les variétés de Poisson et leurs algèbres de Lie associées. J. Differ. Geom. 12(2), 253–300 (1977) · Zbl 0405.53024
[49] Loday J.-L.: Realization of the Stasheff polytope. Arch. Math. 83(3), 267–278 (2004) · Zbl 1059.52017
[50] Losev A., Shadrin S.: From Zwiebach invariants to Getzler relation. Commun. Math. Phys. 271(3), 649–679 (2007) · Zbl 1126.53057 · doi:10.1007/s00220-007-0217-3
[51] Loday, J.-L., Vallette, B.: Algebraic operads, Grundlehren Math. Wiss. 346, Springer, Heidelberg, (2012) · Zbl 1260.18001
[52] Manin, Y.I.: Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces, American Mathematical Society Colloquium Publications, vol. 47. American Mathematical Society, Providence, RI (1999) · Zbl 0952.14032
[53] Markl M.: Models for operads. Commun. Algebra 24(4), 1471–1500 (1996) · Zbl 0848.18003 · doi:10.1080/00927879608825647
[54] Markarian, N.: hycom = bv/\(\delta\) A blog post available through the URL http://nikitamarkarian.wordpress.com/2009/11/22/hycommbv?/ (2009)
[55] Massey, W.S.: Some higher order cohomology operations. In: Symposium internacional de topologí a algebraica. International Symposium on Algebraic Topology. Universidad Nacional Autónoma de México and UNESCO, Mexico City, pp. 145–154 (1958)
[56] Mathieu O.: Harmonic cohomology classes of symplectic manifolds. Comment. Math. Helv. 70(1), 1–9 (1995) · Zbl 0831.58004 · doi:10.1007/BF02565997
[57] Merkulov S.A.: Formality of canonical symplectic complexes and Frobenius manifolds. Int. Math. Res. Not. 14, 727–733 (1998) · Zbl 0931.58002 · doi:10.1155/S1073792898000439
[58] Mac Lane, S.: Homology, Classics in Mathematics. Reprint of the 1975 edition. Springer, Berlin (1995)
[59] Markl, M., Shnider, S., Stasheff, J.: Operads in Algebra, Topology and Physics. Mathematical Surveys and Monographs, vol. 96. American Mathematical Society, Providence, RI (2002) · Zbl 1017.18001
[60] Merkulov S., Vallette B.: Deformation theory of representations of prop(erad)s. I. J. Reine Angew. Math. 634, 51–106 (2009) · Zbl 1187.18006
[61] Merkulov S., Vallette B.: Deformation theory of representations of prop(erad)s. II. J. Reine Angew. Math. 636, 123–174 (2009) · Zbl 1191.18003
[62] Park J.-S.: Semi-classical quantum field theories and Frobenius manifolds. Lett. Math. Phys. 81(1), 41–59 (2007) · Zbl 1117.81129 · doi:10.1007/s11005-007-0165-z
[63] Priddy S.B.: Koszul resolutions. Trans. Am. Math. Soc. 152, 39–60 (1970) · Zbl 0261.18016 · doi:10.1090/S0002-9947-1970-0265437-8
[64] Peters, C.A.M., Steenbrink, J.H.M.: Mixed Hodge structures. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 52, Springer, Berlin (2008)
[65] Quillen D.: Rational homotopy theory. Ann. Math. 90, 205–295 (1969) · Zbl 0191.53702 · doi:10.2307/1970725
[66] Retakh V.S.: Lie–Massey brackets and n-homotopically multiplicative maps of differential graded Lie algebras. J. Pure Appl. Algebra 89(1–2), 217–229 (1993) · Zbl 0781.17013 · doi:10.1016/0022-4049(93)90095-B
[67] Rezk, C.W.: Spaces of algebra structures and cohomology of operads. Ph.D. thesis, MIT (1996)
[68] Sullivan D.: Infinitesimal computations in topology. Inst. Hautes Études Sci. Publ. Math. 47, 269–331 (1978) · Zbl 0374.57002 · doi:10.1007/BF02684341
[69] Terilla J.: Smoothness theorem for differential BV algebras. J. Topol. 1(3), 693–702 (2008) · Zbl 1153.14005 · doi:10.1112/jtopol/jtn019
[70] Van der Laan, P.: Operads up to homotopy and deformations of operad maps. arXiv:math.QA/0208041 (2002)
[71] Van der Laan, P.: Coloured Koszul duality and strongly homotopy operads. arXiv:math.QA/0312147 (2003)
[72] Wang J.S.P.: On the cohomology of the mod-2 Steenrod algebra and the non-existence of elements of Hopf invariant one. Ill. J. Math 11, 480–490 (1967) · Zbl 0161.20204
[73] Xu P.: Gerstenhaber algebras and BV-algebras in Poisson geometry. Commun. Math. Phys. 200(3), 545–560 (1999) · Zbl 0941.17016 · doi:10.1007/s002200050540
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.