×

Bounds of the Neuman-Sándor mean using power and identric means. (English) Zbl 1264.26038

Summary: In this paper we find the best possible lower power mean bounds for the Neuman-Sándor mean and present the sharp bounds for the ratio of the Neuman-Sándor and identric means.

MSC:

26E60 Means
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Neuman, E.; Sándor, J., On the Schwab-Borchardt mean, Mathematica Pannonica, 14, 2, 253-266 (2003) · Zbl 1053.26015
[2] Bullen, P. S.; Mitrinović, D. S.; Vasić, P. M., Means and Their Inequalities. Means and Their Inequalities, Mathematics and its Applications, 31 (1988), Dordrecht, The Netherlands: D. Reidel Publishing, Dordrecht, The Netherlands · Zbl 0687.26005
[3] Sándor, J., On the identric and logarithmic means, Aequationes Mathematicae, 40, 2-3, 261-270 (1990) · Zbl 0717.26014 · doi:10.1007/BF02112299
[4] Pečarić, J. E., Generalization of the power means and their inequalities, Journal of Mathematical Analysis and Applications, 161, 2, 395-404 (1991) · Zbl 0753.26009 · doi:10.1016/0022-247X(91)90339-2
[5] Sándor, J., A note on some inequalities for means, Archiv der Mathematik, 56, 5, 471-473 (1991) · Zbl 0693.26005 · doi:10.1007/BF01200091
[6] Sándor, J.; Raşa, I., Inequalities for certain means in two arguments, Nieuw Archief voor Wiskunde, 15, 1-2, 51-55 (1997) · Zbl 0938.26011
[7] Sándor, J.; Trif, T., Some new inequalities for means of two arguments, International Journal of Mathematics and Mathematical Sciences, 25, 8, 525-532 (2001) · Zbl 1002.26018 · doi:10.1155/S0161171201003064
[8] Trif, T., On certain inequalities involving the identric mean in \(n\) variables, Universitatis Babeş-Bolyai, 46, 4, 105-114 (2001) · Zbl 1027.26024
[9] Alzer, H.; Qiu, S.-L., Inequalities for means in two variables, Archiv der Mathematik, 80, 2, 201-215 (2003) · Zbl 1020.26011 · doi:10.1007/s00013-003-0456-2
[10] Hästö, P. A., Optimal inequalities between Seiffert’s mean and power means, Mathematical Inequalities & Applications, 7, 1, 47-53 (2004) · Zbl 1049.26006 · doi:10.7153/mia-07-06
[11] Wu, S., Generalization and sharpness of the power means inequality and their applications, Journal of Mathematical Analysis and Applications, 312, 2, 637-652 (2005) · Zbl 1083.26018 · doi:10.1016/j.jmaa.2005.03.050
[12] Kouba, O., New bounds for the identric mean of two arguments, Journal of Inequalities in Pure and Applied Mathematics, 9, 3, article 71 (2008) · Zbl 1172.26314
[13] Zhu, L., New inequalities for means in two variables, Mathematical Inequalities & Applications, 11, 2, 229-235 (2008) · Zbl 1141.26317 · doi:10.7153/mia-11-17
[14] Zhu, L., Some new inequalities for means in two variables, Mathematical Inequalities & Applications, 11, 3, 443-448 (2008) · Zbl 1154.26029 · doi:10.7153/mia-11-33
[15] Neuman, E.; Sándor, J., Companion inequalities for certain bivariate means, Applicable Analysis and Discrete Mathematics, 3, 1, 46-51 (2009) · Zbl 1199.26087 · doi:10.2298/AADM0901046N
[16] Chu, Y.-M.; Xia, W.-F., Two sharp inequalities for power mean, geometric mean, and harmonic mean, Journal of Inequalities and Applications, 2009 (2009) · Zbl 1187.26013 · doi:10.1155/2009/741923
[17] Chu, Y.-M.; Qiu, Y.-F.; Wang, M.-K., Sharp power mean bounds for the combination of Seiffert and geometric means, Abstract and Applied Analysis, 2010 (2010) · Zbl 1197.26054 · doi:10.1155/2010/108920
[18] Long, B.-Y.; Chu, Y.-M., Optimal power mean bounds for the weighted geometric mean of classical means, Journal of Inequalities and Applications, 2010 (2010) · Zbl 1187.26016 · doi:10.1155/2010/905679
[19] Wang, M.-K.; Chu, Y.-M.; Qiu, Y.-F., Some comparison inequalities for generalized Muirhead and identric means, Journal of Inequalities and Applications, 2010 (2010) · Zbl 1187.26018 · doi:10.1155/2010/295620
[20] Gao, S., Inequalities for the Seiffert’s means in terms of the identric mean, Journal of Mathematical Sciences, 10, 1-2, 23-31 (2011) · Zbl 1260.26035
[21] Chu, Y.-M.; Wang, M.-K.; Wang, Z.-K., A sharp double inequalities between harmonic and identric means, Abstract and Applied Analysis, 2011 (2011) · Zbl 1225.26060 · doi:10.1155/2011/657935
[22] Qiu, Y.-F.; Wang, M.-K.; Chu, Y.-M.; Wang, G.-D., Two sharp inequalities for Lehmer mean, identric mean and logarithmic mean, Journal of Mathematical Inequalities, 5, 3, 301-306 (2011) · Zbl 1226.26019 · doi:10.7153/jmi-05-27
[23] Wang, M.-K.; Wang, Z.-K.; Chu, Y.-M., An optimal double inequality between geometric and identric means, Applied Mathematics Letters, 25, 3, 471-475 (2012) · Zbl 1247.26040 · doi:10.1016/j.aml.2011.09.038
[24] Li, Y. M.; Long, B. Y.; Chu, Y. M., Sharp bounds for the Neuman-Sándor mean in terms of generalized logarithmic mean, Journal of Mathematical Inequalities, 6, 4, 567-577 (2012) · Zbl 1257.26031
[25] Neuman, E., A note on a certain bivariate mean, Journal of Mathematical Inequalities, 6, 4, 637-643 (2012) · Zbl 1257.26013
[26] Zhao, T. H.; Chu, Y. M.; Liu, B. Y., Optimal bounds for Neuman-Sándor mean in terms of the convex combinations of harmonic, geometric, quadratic, and contraharmonic means, Abstract and Applied Analysis, 2012 (2012) · Zbl 1256.26018 · doi:10.1155/2012/302635
[27] Baumgartner, K., Zur Unauflösbarkeit für \((\frac{e}{a})^a(\frac{b}{e})^b\), Elemente der Mathematik, 40, 5, 123 (1985)
[28] Alzer, H., Ungleichungen für Mittelwerte, Archiv der Mathematik, 47, 5, 422-426 (1986) · Zbl 0585.26014 · doi:10.1007/BF01189983
[29] Burk, F., Notes: the geometric, logarithmic, and arithmetic mean inequality, The American Mathematical Monthly, 94, 6, 527-528 (1987) · Zbl 0632.26008 · doi:10.2307/2322844
[30] Lin, T. P., The power mean and the logarithmic mean, The American Mathematical Monthly, 81, 879-883 (1974) · Zbl 0292.26015 · doi:10.2307/2319447
[31] Pittenger, A. O., Inequalities between arithmetic and logarithmic means, Univerzitet u Beogradu, 678-715, 15-18 (1980) · Zbl 0469.26009
[32] Pittenger, A. O., The symmetric, logarithmic and power means, Univerzitet u Beogradu, 678-715, 19-23 (1980) · Zbl 0469.26010
[33] Jagers, A. A., Solution of problem 887, Nieuw Archief voor Wiskunde, 12, 230-231 (1994)
[34] Sándor, J., On certain identities for means, Universitatis Babeş-Bolyai, 38, 4, 7-14 (1993) · Zbl 0831.26013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.