Hopf bifurcation in symmetric networks of coupled oscillators with hysteresis. (English) Zbl 1264.34093

Summary: The standard approach to the study of the symmetric Hopf bifurcation phenomenon is based on the usage of the equivariant singularity theory developed by M. Golubitsky et al.
In this paper, we present a method based on equivariant degree theory which is complementary to the equivariant singularity approach. Our method allows for a systematic study of symmetric Hopf bifurcation problems in non-smooth/non-generic equivariant settings. The exposition is focused on a network of eight identical van der Pol oscillators with hysteresis memory, which are coupled in a cube-like configuration leading to \(S _{4}\)-equivariance. The hysteresis memory is the source of non-smoothness and of the presence of an infinite-dimensional phase space without local linear structure. The symmetric properties and multiplicity of bifurcating branches of periodic solutions are discussed in the context showing a direct link between the physical properties and the equivariant topology underlying this problem.


34C55 Hysteresis for ordinary differential equations
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
34C14 Symmetries, invariants of ordinary differential equations
34C23 Bifurcation theory for ordinary differential equations
37G40 Dynamical aspects of symmetries, equivariant bifurcation theory
Full Text: DOI


[1] Antonyan, S.A.: Equivariant generalization of Dugundji’s theorem. Mat. Zametki 38:608–616 (in Russian) (1985). English translation in 1985, Math. Notes 38, 844–848 · Zbl 0604.57026
[2] Appelbe B., Rachinskii D., Zhezherun A.: Hopf bifurcation in a van der Pol type oscillator with magnetic hysteresis. Phys. B 403, 301–304 (2008)
[3] Appelbe B., Flynn D., McNamara H., O’Kane P., Pimenov A., Pokrovskii A., Rachinskii D., Zhezherun A.: Rate-independent hysteresis in terrestrial hydrology. IEEE Control Syst. Mag. 29, 44–69 (2009)
[4] Ashwin P., Podvigina O.: Hopf bifurcation with rotational symmetry of the cube and instability of ABC flow. Proc. R. Soc. A 459, 1801–1827 (2003) · Zbl 1116.37310
[5] Aubry S.: Exact models with a complete Devil’s staircase. J. Phys. C: Solid State Phys. 16, 2497–2508 (1983)
[6] Balanov Z., Krawcewicz W.: Symmetric Hopf bifurcation: twisted degree approach. In: Battelli, F., Feckan, M. (eds) Handbook of Differential Equations, Ordinary Differential Equations, vol. 4, pp. 1–131. Elsevier, Amsterdam (2008) · Zbl 1192.34002
[7] Balanov Z., Krawcewicz W., Ruan H.: Applied equivariant degree, part I: an axiomatic approach to primary degree. Discr. Continuous Dyn. Syst. A 15, 983–1016 (2006) · Zbl 1115.58013
[8] Balanov Z., Krawcewicz W., Steinlein H.: Applied Equivariant Degree, AIMS Series on Differential Equations and Dynamical Systems, vol. 1. AIMS, Springfield (2006) · Zbl 1123.47043
[9] Balanov Z., Krawcewicz W., Rybicki S., Steinlein H.: A short treatise on the equivariant degree theory and its applications, a short treatise on the equivariant degree theory and its applications (on the occasion of S. Smale’s 80-th birthday. J. Fixed Point Theory Appl. 8, 1–74 (2010) · Zbl 1206.47057
[10] Barut A.O., Ra\c{}czka R.: Theory of Group Representations and Applications. World Scientific Publishing Co., Singapore (1986)
[11] Bredon G.E.: Introduction to Compact Transformation Groups. Academic Press, New York (1972) · Zbl 0246.57017
[12] Brokate M., Collings I., Pokrovskii A., Stagnitti F.: Asymptotically stable oscillations in systems with hysteresis nonlinearities. Z. Anal. Anw. 19, 469–487 (2000) · Zbl 0972.47064
[13] Brokate M., Sprekels J.: Hysteresis and Phase Transitions. Springer, New York (1996) · Zbl 0951.74002
[14] Brokate M., Pokrovskii A., Rachinskii D., Rasskazov O.: Differential equations with hysteresis via a canonical example. In: Bertotti, G., Mayergoyz , I. (eds) The Science of Hysteresis, vol. 1, pp. 127–291. Academic Press, New York (2005) · Zbl 1142.34026
[15] Brokate M., Pokrovskii A.V., Rachinskii D.I.: Asymptotic stability of continual sets of periodic solutions to systems with hysteresis. J. Math. Anal. Appl. 319, 94–109 (2006) · Zbl 1111.34035
[16] Colombo A., di Bernardo M., Hogan S.J., Kowalczyk P.: Complex dynamics in a hysteretic relay feedback system with delay. J. Nonlinear Sci. 17, 85–108 (2007) · Zbl 1170.34033
[17] Cross R., Grinfeld M., Lamba H., Seaman T.: Stylized facts from a threshold-based heterogeneous agent model. The Eur. Phys. J. B 57, 213–218 (2007) · Zbl 1189.91061
[18] Dahmen K.: Nonlinear dynamics: universal clues in noisy skews. Nat. Phys. 1, 13–14 (2005)
[19] Dahmen K., Ben-Zion Y.: The physics of jerky motion in slowly driven magnetic and earthquake fault systems. In: Marchetti, C., Meyers, R.A. (eds) Enciclopedia of Complexity and Systems Science, Springer, New York (2009)
[20] Dahmen K.A., Ben-Zion Y., Uhl J.T.: A micromechanical model for deformation in solids and with universal predictions for stress strain curves and slip avalances. Phys. Rev. Lett. 102, 175501 (2009)
[21] Dancer E.N.: A new degree for S 1-invariant gradient mappings and applications. Ann. Inst. H. Poincaré Anal. Non Lineaire 2, 1–18 (1985)
[22] Dancer E.N., Toland J.F.: The index change and global bifurcation for flows with first integrals. Proc. Lond. Math. Soc. 66, 539–567 (1993) · Zbl 0793.34025
[23] Davino D., Giustiniani A., Visone C.: Compensation and control of two-inputs systems with hysteresis. J. Phys. Conf. Ser. 268, 012005 (2011)
[24] Diamond P., Rachinskii D.I., Yumagulov M.G.: Stability of large cycles in a nonsmooth problem with Hopf bifurcation at infinity. Nonlinear Anal. 42, 1017–1031 (2000) · Zbl 0963.34034
[25] Diamond P., Kuznetsov N.A., Rachinskii D.I.: On the Hopf bifurcation in control systems with asymptotically homogeneous at infinity bounded nonlinearities. J. Differ. Equ. 175, 1–26 (2001) · Zbl 0984.34029
[26] Dias A.P.S., Rodrigues A.: Hopf bifurcation with S N -symmetry. Nonlinearity 27, 627–666 (2009) · Zbl 1168.37015
[27] Eleuteri M., Kopfova J., Krejči P.: On a model with hysteresis arising in magnetohydrodynamics. Physica B 403, 448–450 (2008)
[28] Fiedler B.: Global Bifurcation of Periodic Solutions with Symmetry, Lecture Notes in Mathematics, vol. 1309. Springer, New York (1988) · Zbl 0644.34038
[29] Field M.J.: Dynamics and Symmetry, ICP Advanced Texts in Mathematics, vol. 3. Imperial College Press, London (2007) · Zbl 1146.34001
[30] Field M.J., Swift J.W.: Hopf bifurcation and Hopf fibration. Nonlinearity 7, 385–402 (1994) · Zbl 0840.58035
[31] Fuller F.B.: An index of fixed point type for periodic orbits. Am. J. Math. 89, 133–148 (1967) · Zbl 0152.40204
[32] Gleeson J.P.: Bond percolation on a class of clustered random networks. Phys. Rev. E 80, 036107 (2009)
[33] Godsil, C.: (2004). Association Schemes http://quoll/unwaterloo.ca/pstuff/assoc.eps
[34] Goicoechea J., Ortin J.: Hysteresis and return-point memory in deterministic cellular automata. Phys. Rev. Lett. 72, 2203 (1994)
[35] Golubitsky M., Stewart I.N.: The Symmetry Perspective. Berlin, Birkhäuser (2002) · Zbl 1031.37001
[36] Golubitsky M., Schaeffer D.G., Stewart I.N.: Singularities and Groups in Bifurcation Theory, vol. 2. Springer, New York (1988) · Zbl 0691.58003
[37] Guo S., Lamb J.S.W.: Equivariiant Hopf bifurcation for neutral functional differential equations. Proc. Am. Math. Soc. 136, 2031–2041 (2008) · Zbl 1149.34045
[38] Guyer R.A., McCall K.R.: Capillary condensation, invasion percolation, hysteresis, and discrete memory. Phys. Rev. B. 54, 18–21 (1996)
[39] Iudovĭck V.I.: The onset of auto-oscillations in a fluid. Prikl. Mat. Mek. 35, 638–655 (1971)
[40] Iyer, R., Tan, X.: (eds.) Hysteresis. IEEE Control Systems Magazine 1 (2009)
[41] Ize, J., Vignoli, A.: Equivariant Degree Theory, De Gruyter Series in Nonlinear Analysis and Applications, vol. 8, W. de Gruyter (2003) · Zbl 1033.47001
[42] Kawakubo K.: The Theory of Transformation Groups. The Clarendon Press, New York (1991) · Zbl 0744.57001
[43] Kirillov A.A.: Elements of the Theory of Representations, Grundlehren der Mathematischen Wissenschaften, vol. 220. Springer, Berlin (1976) · Zbl 0342.22001
[44] Krasnosel’skii M.A.: Positive Solutions of Operator Equations. P. Noordhoff Ltd., Groningen (1964)
[45] Krasnosel’skii M., Pokrovskii A.: Systems with Hysteresis. Springer, New York (1989)
[46] Krasnosel’skii A.M., Rachinskii D.I.: On a bifurcation governed by hysteresis nonlinearity. Nonlinear Differ. Equ. Appl. 9, 93–115 (2002) · Zbl 1013.34036
[47] Krasnosel’skii A.M., Rachinskii D.I.: On continuous branches of cycles in systems with non-linearizable nonlinearities. Doklady Math. 67, 153–158 (2003)
[48] Krasnosel’skii A.M., Kuznetsov N.A., Rachinskii D.I.: Nonlinear Hopf bifurcations. Doklady Math. 61, 389–392 (2000)
[49] Krasnosel’skii A.M., Rachinskii D.I.: On continua of cycles in systems with hysteresis. Doklady Math. 63, 339–344 (2001)
[50] Krasnosel’skii A.M., Rachinskii D.I.: On existence of cycles in autonomous systems. Doklady Math. 65, 344–349 (2002) · Zbl 1197.34060
[51] Krasnosel’skii A.M., Kuznetsov N.A., Rachinskii D.I.: On resonant differential equations with unbounded nonlinearities. Z. Anal. Anwendungen 21, 639–668 (2002) · Zbl 1025.34032
[52] Krawcewicz W., Wu J.: Theory of Degrees with Applications to Bifurcations and Differential Equations, Canadian Mathematical Society Series of Monographs and Advanced Texts. Wiley, New York (1997) · Zbl 0882.58001
[53] Krejci P.: On Maxwell equations with the Preisach hysteresis operator: the one-dimensional time-periodic case. Appl. Math. 34, 364–374 (1989) · Zbl 0701.35098
[54] Krejči P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations. Gakkotosho, Tokyo (1996) · Zbl 1187.35003
[55] Krejci P.: Resonance in Preisach systems. Appl. Math. 45, 439–468 (2000) · Zbl 1010.34038
[56] Krejci P., Sprekels J., Zheng S.: Asymptotic behaviour for a phase-field system with hysteresis. J. Differ. Equ. 175, 88–107 (2001) · Zbl 1021.35131
[57] Krejci P., O’Kane P., Pokrovskii A., Rachinskii D.: Stability results for a soil model with singular hysteretic hydrology. J. Phys. Conf. Ser. 268, 012016 (2010)
[58] Kuhnen K.: Compensation of parameter-dependent complex hysteretic actuator nonlinearities in smart material systems. J. Intel. Mater. Syst. Struct. 19, 1411–1424 (2008)
[59] Kushkuley A., Balanov Z.: Geometric Methods in Degree Theory for Equivariant Maps, Lecture Notes in Mathematics, vol. 1632. Springer, Berlin-Heidelberg (1996) · Zbl 0860.55001
[60] Kuznetsov Yu. A.: Elements of Applied Bifurcation Theory. Springer, Berlin (1995) · Zbl 0829.58029
[61] Kuznetsov N.A., Rachinskii D., Zhezherun A.: Hopf bifurcation in systems with Preisach operator. Doklady Math. 78, 705–709 (2008) · Zbl 1186.34061
[62] Lamba H., Seaman T.: Market statistics of a psychology-based heterogeneous agent model. Int. J. Theor. Appl. Finance 11, 717–737 (2008) · Zbl 1185.91190
[63] Logemann H., Ryan E.P., Shvartsman I.: A class of differential-delay systems with hysteresis: asymptotic behaviour of solutions. Nonlinear Anal. Theory Methods Appl. 69, 363–391 (2008) · Zbl 1217.34121
[64] Mayergoyz I.D.: Mathematical Models of Hysteresis. Springer, New York (1991) · Zbl 0723.73003
[65] Mayergoyz, I.D., Bertotti, G. (eds): The Science of Hysteresis, 3-volume set. Elsevier, Academic Press (2005)
[66] Mehta A., Barker G.C.: Bistability and hysteresis in tilted sandpiles. Europhys. Lett. 56, 626–632 (2001)
[67] Pimenov A., Rachinskii D.: Linear stability analysis of systems with Preisach memory. Discr. Continuous Dyn. Syst. B 11, 997–1018 (2009) · Zbl 1181.47075
[68] Pokrovskii A., Power T., Rachinskii D., Zhezherun A.: Stability by linear approximation of ODEs with Preisach operator. J. Phys. Conf. Ser. 55, 171–190 (2006)
[69] Rachinskii D.I.: Asymptotic stability of large-amplitude oscillations in systems with hysteresis. Nonlinear Differ. Equ. Appl. 6, 267–288 (1999) · Zbl 0938.34036
[70] Rachinskii D.I., Schneider K.R.: Dynamic Hopf bifurcations generated by nonlinear terms. J. Differ. Equ. 210, 65–86 (2005) · Zbl 1070.34065
[71] Rezaei-Zare A., Sanaye-Pasand M., Mohseni H., Farhangi Sh., Iravani R.: Analysis of ferroresonance modes in power transformers using Preisach-type hysteretic magnetizing inductance. IEEE Trans. Power Deliv. 22, 919–929 (2007)
[72] Sethna J.P., Dahmen K., Kartha S., Krumhansl J.A., Robetrs B.W., Shore J.D.: Hysteresis and hierarchies: dynamics of disorder-driven first-order phase transitions. Phys. Rev Lett. 70, 3347 (1993)
[73] Sethna J.P., Dahmen K., Myers C.R.: Crackling noise. Nature 410, 242–250 (2001)
[74] Sethna J.P., Dahmen K.A., Perkovic O.: Random-field Ising models of hysteresis. In: Bertotti, G., Mayergoyz, I. (eds) The Science of Hysteresis, vol 2, pp. 107–168. Elsevier, Amsterdam (2005)
[75] tom Dieck T.: Transformation Groups. W. de Gruyter, Berlin (1987) · Zbl 0611.57002
[76] Turing A.: The chemical basis of morphogenesis. Phil. Trans. R. Soc. B. 237, 37–72 (1952) · Zbl 1403.92034
[77] Visintin A.: Differential Models of Hysteresis. Springer, Berlin (1994) · Zbl 0820.35004
[78] Visone C.: Hysteresis modelling and compensation for smart sensors and actuators. J. Phys. Conf. Ser. 138, 012028 (2008)
[79] Watts D.J.: A simple model of global cascades on random networks. Proc. Nat. Acad Sci. USA 99, 5766–5771 (2002) · Zbl 1022.90001
[80] Wielandt H.: Finite Permutation Groups. Academic Press, New York (1964) · Zbl 0138.02501
[81] Wu J.: Symmetric functional-differential equations and neural networks with memory. Trans. Am. Math. Soc. 350, 4799–4838 (1998) · Zbl 0905.34034
[82] Yoshida K.: The Hopf bifurcation and its stability for semilinear diffusion equations with time delay arising in ecology. Hiroshima Math. J. 12, 321–348 (1982) · Zbl 0522.35011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.