zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The extended fractional subequation method for nonlinear fractional differential equations. (English) Zbl 1264.35272
Summary: An extended fractional subequation method is proposed for solving fractional differential equations by introducing a new general ansatz and Bäcklund transformation of the fractional Riccati equation with known solutions. Being concise and straightforward, this method is applied to the space-time fractional coupled Burgers’ equations and coupled MKdV equations. As a result, many exact solutions are obtained. It is shown that the considered method provides a very effective, convenient, and powerful mathematical tool for solving fractional differential equations.
MSC:
35R11Fractional partial differential equations
35C05Solutions of PDE in closed form
35Q53KdV-like (Korteweg-de Vries) equations
WorldCat.org
Full Text: DOI
References:
[1] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies, Elsevier Science, Amsterdam, The Netherlands, 2006. · Zbl 1206.26007 · doi:10.1016/S0304-0208(06)80001-0
[2] R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publishing, River Edge, NJ, USA, 2000. · Zbl 1177.26011 · doi:10.1142/9789812817747
[3] B. J. West, M. Bologna, and P. Grigolini, Physics of Fractal Operators, Springer, New York, NY, USA, 2003. · Zbl 1225.62144 · doi:10.1111/j.0006-341X.2003.00121.x
[4] K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, New York, NY, USA, 1993. · Zbl 0943.82582 · doi:10.1007/BF01048101
[5] S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Gordon and Breach Science, Yverdon, Switzerland, 1993. · Zbl 0924.44003 · doi:10.1080/10652469308819017
[6] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[7] K. B. Oldham and J. Spanier, The Fractional Calculus, Academic Press, New York, NY, USA, 1974. · Zbl 0292.26011
[8] V. Kiryakova, Generalized Fractional Calculus and Applications, vol. 301 of Pitman Research Notes in Mathematics Series, Longman Scientific & Technical, Harlow, UK, 1994. · Zbl 0894.26002
[9] I. Podlubny, Fractional Differential Equations, vol. 198 of Mathematics in Science and Engineering, Academic Press, New York, NY, USA, 1999. · Zbl 1056.93542 · doi:10.1109/9.739144
[10] J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering, Springer, New York, NY, USA, 2007. · Zbl 1125.93029 · doi:10.1007/978-1-4020-6042-7_37
[11] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models, Imperial College Press, London, UK, 2010. · Zbl 1222.26015 · doi:10.1142/9781848163300 · eudml:219561
[12] D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus: Models and Numerical Methods, vol. 3 of Series on Complexity, Nonlinearity and Chaos, World Scientific Publishing, Boston, Mass, USA, 2012. · Zbl 1248.26011 · doi:10.1142/9789814355216
[13] X. J. Yang, Local Fractional Functional Analysis and Its Applications, Asian Academic Publisher, Hong Kong.
[14] X. J. Yang, Advanced Local Fractional Calculus and Its Applications, World Science Publisher, New York, NY, USA, 2012.
[15] A. H. A. Ali, “The modified extended tanh-function method for solving coupled MKdV and coupled Hirota-Satsuma coupled KdV equations,” Physics Letters. A, vol. 363, no. 5-6, pp. 420-425, 2007. · Zbl 1197.35212 · doi:10.1016/j.physleta.2006.11.076
[16] C. Li, A. Chen, and J. Ye, “Numerical approaches to fractional calculus and fractional ordinary differential equation,” Journal of Computational Physics, vol. 230, no. 9, pp. 3352-3368, 2011. · Zbl 1218.65070 · doi:10.1016/j.jcp.2011.01.030
[17] G. H. Gao, Z. Z. Sun, and Y. N. Zhang, “A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions,” Journal of Computational Physics, vol. 231, no. 7, pp. 2865-2879, 2012. · Zbl 1242.65160 · doi:10.1016/j.jcp.2011.12.028
[18] W. Deng, “Finite element method for the space and time fractional Fokker-Planck equation,” SIAM Journal on Numerical Analysis, vol. 47, no. 1, pp. 204-226, 2008/09. · doi:10.1137/080714130
[19] S. Momani, Z. Odibat, and V. S. Erturk, “Generalized differential transform method for solving a space- and time-fractional diffusion-wave equation,” Physics Letters. A, vol. 370, no. 5-6, pp. 379-387, 2007. · Zbl 1209.35066 · doi:10.1016/j.physleta.2007.05.083
[20] Z. Odibat and S. Momani, “A generalized differential transform method for linear partial differential equations of fractional order,” Applied Mathematics Letters, vol. 21, no. 2, pp. 194-199, 2008. · Zbl 1132.35302 · doi:10.1016/j.aml.2007.02.022
[21] Y. Hu, Y. Luo, and Z. Lu, “Analytical solution of the linear fractional differential equation by Adomian decomposition method,” Journal of Computational and Applied Mathematics, vol. 215, no. 1, pp. 220-229, 2008. · Zbl 1132.26313 · doi:10.1016/j.cam.2007.04.005
[22] A. M. A. El-Sayed and M. Gaber, “The Adomian decomposition method for solving partial differential equations of fractal order in finite domains,” Physics Letters. A, vol. 359, no. 3, pp. 175-182, 2006. · Zbl 1236.35003 · doi:10.1016/j.physleta.2006.06.024
[23] A. M. A. El-Sayed, S. H. Behiry, and W. E. Raslan, “Adomian’s decomposition method for solving an intermediate fractional advection-dispersion equation,” Computers & Mathematics with Applications, vol. 59, no. 5, pp. 1759-1765, 2010. · Zbl 1189.35358 · doi:10.1016/j.camwa.2009.08.065
[24] Z. Odibat and S. Momani, “The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics,” Computers & Mathematics with Applications, vol. 58, no. 11-12, pp. 2199-2208, 2009. · Zbl 1189.65254 · doi:10.1016/j.camwa.2009.03.009
[25] M. Inc, “The approximate and exact solutions of the space- and time-fractional Burgers equations with initial conditions by variational iteration method,” Journal of Mathematical Analysis and Applications, vol. 345, no. 1, pp. 476-484, 2008. · Zbl 1146.35304 · doi:10.1016/j.jmaa.2008.04.007
[26] G. C. Wu and E. W. M. Lee, “Fractional variational iteration method and its application,” Physics Letters. A, vol. 374, no. 25, pp. 2506-2509, 2010. · Zbl 1237.34007 · doi:10.1016/j.physleta.2010.04.034
[27] J.-H. He, “Homotopy perturbation technique,” Computer Methods in Applied Mechanics and Engineering, vol. 178, no. 3-4, pp. 257-262, 1999. · Zbl 0956.70017 · doi:10.1016/S0045-7825(99)00018-3
[28] E. Fan, “Soliton solutions for a generalized Hirota-Satsuma coupled KdV equation and a coupled MKdV equation,” Physics Letters. A, vol. 282, no. 1-2, pp. 18-22, 2001. · Zbl 0984.37092 · doi:10.1016/S0375-9601(01)00161-X
[29] J. H. He, “A coupling method of a homotopy technique and a perturbation technique for non-linear problems,” International Journal of Non-Linear Mechanics, vol. 35, no. 1, pp. 37-43, 2000. · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[30] S. Zhang and H. Q. Zhang, “Fractional sub-equation method and its applications to nonlinear fractional PDEs,” Physics Letters. A, vol. 375, no. 7, pp. 1069-1073, 2011. · Zbl 1242.35217 · doi:10.1016/j.physleta.2011.01.029
[31] M. L. Wang, “Solitary wave solutions for variant Boussinesq equations,” Physics Letters. A, vol. 199, no. 3-4, pp. 169-172, 1995. · Zbl 1020.35528 · doi:10.1016/0375-9601(95)00092-H
[32] G. Jumarie, “Modified Riemann-Liouville derivative and fractional Taylor series of nondifferentiable functions further results,” Computers & Mathematics with Applications, vol. 51, no. 9-10, pp. 1367-1376, 2006. · Zbl 1137.65001 · doi:10.1016/j.camwa.2006.02.001
[33] G. Jumarie, “Fractional partial differential equations and modified Riemann-Liouville derivative new methods for solution,” Journal of Applied Mathematics & Computing, vol. 24, no. 1-2, pp. 31-48, 2007. · Zbl 1145.26302 · doi:10.1007/BF02832299
[34] S. Guo, L. Mei, Y. Li, and Y. Sun, “The improved fractional sub-equation method and its applications to the space-time fractional differential equations in fluid mechanics,” Physics Letters. A, vol. 376, no. 4, pp. 407-411, 2012. · Zbl 1255.37022 · doi:10.1016/j.physleta.2011.10.056
[35] B. Lu, “Bäcklund transformation of fractional Riccati equation and its applications to nonlinear fractional partial differential equations,” Physics Letters. A, vol. 376, no. 28-29, pp. 2045-2048, 2012. · Zbl 1266.35139 · doi:10.1016/j.physleta.2012.05.013
[36] G. Jumarie, “Cauchy’s integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order,” Applied Mathematics Letters, vol. 23, no. 12, pp. 1444-1450, 2010. · Zbl 1202.30068 · doi:10.1016/j.aml.2010.08.001
[37] J. H. He, S. K. Elagan, and Z. B. Li, “Geometrical explanation of the fractional complex transform and derivative chain rule for fractional calculus,” Physics Letters. A, vol. 376, no. 4, pp. 257-259, 2012. · Zbl 1255.26002 · doi:10.1016/j.physleta.2011.11.030
[38] J. H. He, “Asymptotic methods for solitary solutions and compacts,” Abstract and applied analysis. In press. · doi:10.1155/2012/916793
[39] S. E. Esipov, “Coupled Burgers equations: a model of polydispersive sedimentation,” Physical Review E, vol. 52, no. 4, pp. 3711-3718, 1995. · doi:10.1103/PhysRevE.52.3711
[40] A. A. Soliman, “The modified extended tanh-function method for solving Burgers-type equations,” Physica A, vol. 361, no. 2, pp. 394-404, 2006. · doi:10.1016/j.physa.2005.07.008