zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An approximation to solution of space and time fractional telegraph equations by the variational iteration method. (An aproximation to solution of space and time fractional telegraph equations by the variational iteration method.) (English) Zbl 1264.65172

65M99Numerical methods for IVP of PDE
34A08Fractional differential equations
45K05Integro-partial differential equations
Full Text: DOI
[1] J.-H. He, “Approximate analytical solution for seepage flow with fractional derivatives in porous media,” Computer Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57-68, 1998. · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[2] J. H. He, “Asymptotic methods for solitary solutions and compactons,” Abstract and Applied Analysis. In press.
[3] A. Sevimlican, “An approximation to solution of space and time fractional telegraph equations by He’s variational iteration method,” Mathematical Problems in Engineering, vol. 2010, Article ID 290631, 10 pages, 2010. · Zbl 1191.65137 · doi:10.1155/2010/290631 · eudml:230924
[4] J.-H. He, “Some asymptotic methods for strongly nonlinear equations,” International Journal of Modern Physics B, vol. 20, no. 10, pp. 1141-1199, 2006. · Zbl 1102.34039 · doi:10.1142/S0217979206033796
[5] J.-H. He, “A short remark on fractional variational iteration method,” Physics Letters A, vol. 375, no. 38, pp. 3362-3364, 2011. · Zbl 1252.49027 · doi:10.1016/j.physleta.2011.07.033
[6] G.-C. Wu, “A fractional variational iteration method for solving fractional nonlinear differential equations,” Computers & Mathematics with Applications, vol. 61, no. 8, pp. 2186-2190, 2011. · Zbl 1219.65085 · doi:10.1016/j.camwa.2010.09.010
[7] G.-C. Wu and E. W. M. Lee, “Fractional variational iteration method and its application,” Physics Letters A, vol. 374, no. 25, pp. 2506-2509, 2010. · Zbl 1237.34007 · doi:10.1016/j.physleta.2010.04.034