zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complexity analysis of a Cournot-Bertrand duopoly game model with limited information. (English) Zbl 1264.91066
Summary: A Cournot-Bertrand mixed duopoly game model with limited information about the market and opponent is considered, where the market has linear demand and two firms have the same fixed marginal cost. The principles of decision-making are bounded rational. One firm chooses output and the other chooses price as decision variable, with the assumption that there is a certain degree of differentiation between the products offered by firms to avoid the whole market being occupied by the one that applies a lower price. The existence of Nash equilibrium point and its local stability of the game are investigated. The complex dynamics, such as bifurcation scenarios and route to chaos, are displayed using parameter basin plots by numerical experiment. The influences of the parameters on the system performance are discussed from the perspective of economics.

91B26Market models (auctions, bargaining, bidding, selling, etc.)
91A40Game-theoretic models
E&F Chaos
Full Text: DOI
[1] G. I. Bischi, C. Chiarella, M. O. Kopel, and F. Szidarovszky, Nonlinear Oligopolies: Stability and Bifurcations, Springer, New York, NY, USA, 2009. · Zbl 1183.37095
[2] T. Puu and I. Sushko, Oligopoly Dynamics: Models and Tools, Springer, New York, NY, USA, 2002. · Zbl 1160.91336
[3] A. A. Cournot, Recherches sur les principes mathmatiques de la thorie des richesses, L. Hachette, 1838. · Zbl 0174.51801
[4] L. Walras, Thorie Mathmatique de la Richesse Sociale, Guillaumin, 1883. · Zbl 15.0171.01
[5] J. Ma and X. Pu, “Complex dynamics in nonlinear triopoly market with different expectations,” Discrete Dynamics in Nature and Society, vol. 2011, Article ID 902014, 12 pages, 2011. · Zbl 1233.91180 · doi:10.1155/2011/902014
[6] Z. Sun and J. Ma, “Complexity of triopoly price game in Chinese cold rolled steel market,” Nonlinear Dynamics, vol. 67, no. 3, pp. 2001-2008, 2012. · doi:10.1007/s11071-011-0124-1
[7] J. Zhang and J. Ma, “Research on the price game model for four oligarchs with different decision rules and its chaos control,” Nonlinear Dynamics, vol. 70, no. 1, pp. 323-334, 2012. · doi:10.1007/s11071-012-0457-4
[8] A. K. Naimzada and F. Tramontana, “Dynamic properties of a Cournot-Bertrand duopoly game with differentiated products,” Economic Modelling, vol. 290, pp. 1436-1439, 2012.
[9] S. Bylka and J. Komar, “Cournot-Bertrand mixed oligopolies,” in Warsaw Fall Seminars in Mathematical Economics, M. Beckmann HP Kunzi, Ed., vol. 133 of Lecture Notes in Economics and Mathematical Systems, pp. 22-33, Springer, New York, NY, USA, 1976. · Zbl 0334.90008 · doi:10.1007/978-3-642-48296-0_3
[10] N. Singh and X. Vives, “Price and quantity competition in a differentiated duopoly,” The RAND Journal of Economics, vol. 15, pp. 546-554, 1984. · doi:10.2307/2555525
[11] J. Häckner, “A note on price and quantity competition in differentiated oligopolies,” Journal of Economic Theory, vol. 93, no. 2, pp. 233-239, 2000. · Zbl 1028.91563 · doi:10.1006/jeth.2000.2654
[12] P. Zanchettin, “Differentiated duopoly with asymmetric costs,” Journal of Economics and Management Strategy, vol. 15, no. 4, pp. 999-1015, 2006. · doi:10.1111/j.1530-9134.2006.00125.x
[13] A. Arya, B. Mittendorf, and D. E. M. Sappington, “Outsourcing, vertical integration, and price vesus quantity competition,” International Journal of Industrial Organization, vol. 26, no. 1, pp. 1-16, 2008. · doi:10.1016/j.ijindorg.2006.10.006
[14] C. H. Tremblay and V. J. Tremblay, “The Cournot-Bertrand model and the degree of product differentiation,” Economics Letters, vol. 111, no. 3, pp. 233-235, 2011. · Zbl 1217.91114 · doi:10.1016/j.econlet.2011.02.011
[15] L. Fanti and L. Gori, “The dynamics of a differentiated duopoly with quantity competition,” Economic Modelling, vol. 29, pp. 421-427, 2012. · doi:10.1016/j.econmod.2011.11.010
[16] E. Ahmed, H. N. Agiza, and S. Z. Hassan, “On modifications of Puu’s dynamical duopoly,” Chaos, Solitons and Fractals, vol. 11, no. 7, pp. 1025-1028, 2000. · Zbl 0955.91045 · doi:10.1016/S0960-0779(98)00322-1
[17] T. Puu, Attractors, Bifurcations, & Chaos: Nonlinear Phenomena in Economics, Springer, New York, NY, USA, 2003.
[18] C. Diks, C. Hommes, V. Panchenko, and R. van der Weide, “E&F chaos: a user friendly software package for nonlinear economic dynamics,” Computational Economics, vol. 32, no. 1-2, pp. 221-244, 2008. · Zbl 1142.91303 · doi:10.1007/s10614-008-9130-x
[19] A. Medio and G. Gallo, Chaotic Dynamics: Theory and Applications to Economics, Cambridge University Press, Cambridge, UK, 1995.
[20] G. Gandolfo, Economic Dynamics, Springer, New York, NY, USA, 2010. · Zbl 1177.91094
[21] Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Springer, New York, NY, USA, 1998. · Zbl 0914.58025
[22] T. Y. Li and J. A. Yorke, “Period three implies chaos,” The American Mathematical Monthly, vol. 82, no. 10, pp. 985-992, 1975. · Zbl 0351.92021 · doi:10.2307/2318254