zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Entropy and multifractality for the myeloma multiple TET 2 gene. (English) Zbl 1264.92017
Summary: The nucleotide and amino-acid distributions are studied for two variants of mRNA of genes that code for a protein which is involved in multiple myeloids. Some patches and symmetries are singled out, thus showing some distinctions between the two variants. Fractal dimensions and entropy are discussed as well.

92C40Biochemistry, molecular biology
62P10Applications of statistics to biology and medical sciences
Full Text: DOI
[1] C. Cattani, “Fractals and hidden symmetries in DNA,” Mathematical Problems in Engineering, vol. 2010, Article ID 507056, 31 pages, 2010. · Zbl 1189.92015 · doi:10.1155/2010/507056 · eudml:232469
[2] C. Cattani, “Wavelet algorithms for DNA analysis,” in Computational Molecular Biology: Techniques, Approaches and Applications, M. Elloumi and A. Y. Zomaya, Eds., Wiley Series in Bioinformatics, chapter 35, John Wiley & Sons, New York, NY, USA, 2010. · Zbl 1189.92015
[3] C. Cattani and G. Pierro, “Complexity on acute myeloid leukemia mRNA transcript variant,” Mathematical Problems in Engineering, vol. 2011, Article ID 379873, 16 pages, 2011. · Zbl 1235.92025 · doi:10.1155/2011/379873
[4] R. F. Voss, “Evolution of long-range fractal correlations and 1/f noise in DNA base sequences,” Physical Review Letters, vol. 68, no. 25, pp. 3805-3808, 1992. · doi:10.1103/PhysRevLett.68.3805
[5] R. F. Voss, “Long-Range Fractal Correlations in DNA introns and exons,” Fractals, vol. 2, pp. 1-6, 1992.
[6] S. V. Buldyrev, A. L. Goldberger, S. Havlin et al., “Long-range correlation properties of coding and noncoding DNA sequences: GenBank analysis,” Physical Review E, vol. 51, no. 5, pp. 5084-5091, 1995. · doi:10.1103/PhysRevE.51.5084
[7] K. Metze, “Fractal dimension of chromatin and cancer prognosis,” Epigenomics, vol. 2, no. 5, pp. 601-604, 2010. · doi:10.2217/epi.10.50
[8] R. L. Adam, R. C. Silva, F. G. Pereira, N. J. Leite, I. Lorand-Metze, and K. Metze, “The fractal dimension of nuclear chromatin as a prognostic factor in acute precursor B lymphoblastic leukemia,” Cellular Oncology, vol. 28, no. 1-2, pp. 55-59, 2006.
[9] K. Metze, I. Lorand-Metze, N. J. Leite, and R. L. Adam, “Goodness-of-fit of the fractal dimension as a prognostic factor,” Cellular Oncology, vol. 31, no. 6, pp. 503-504, 2009. · doi:10.3233/CLO-2009-0505
[10] L. Goutzanis, N. Papadogeorgakis, P. M. Pavlopoulos et al., “Nuclear fractal dimension as a prognostic factor in oral squamous cell carcinoma,” Oral Oncology, vol. 44, no. 4, pp. 345-353, 2008. · doi:10.1016/j.oraloncology.2007.04.005
[11] A. Mashiah, O. Wolach, J. Sandbank, O. Uziel, P. Raanani, and M. Lahav, “Lymphoma and leukemia cells possess fractal dimensions that correlate with their biological features,” Acta Haematologica, vol. 119, no. 3, pp. 142-150, 2008. · doi:10.1159/000125551
[12] K. Metze, D. P. Ferro, M. A. Falconi, et al., “Fractal characteristics of nuclear chromatin in routinely stained cytology are independent prognostic factors in patients with multiple myeloma,” Virchows Archiv, vol. 445, supplement 1, pp. 7-21, 2009.
[13] V. Bedin, R. L. Adam, B. C. S. de Sá, G. Landman, and K. Metze, “Fractal dimension of chromatin is an independent prognostic factor for survival in melanoma,” BMC Cancer, vol. 10, article 260, 2010. · doi:10.1186/1471-2407-10-260
[14] D. V. Lebedev, M. V. Filatov, A. I. Kuklin et al., “Fractal nature of chromatin organization in interphase chicken erythrocyte nuclei: DNA structure exhibits biphasic fractal properties,” FEBS Letters, vol. 579, no. 6, pp. 1465-1468, 2005. · doi:10.1016/j.febslet.2005.01.052
[15] J. G. McNally and D. Mazza, “Fractal geometry in the nucleus,” The EMBO Journal, vol. 29, no. 1, pp. 2-3, 2010. · doi:10.1038/emboj.2009.375
[16] M. Takahashi, “A fractal model of chromosomes and chromosomal DNA replication,” Journal of Theoretical Biology, vol. 141, no. 1, pp. 117-136, 1989. · doi:10.1016/S0022-5193(89)80012-8
[17] A. Delides, I. Panayiotides, A. Alegakis et al., “Fractal dimension as a prognostic factor for laryngeal carcinoma,” Anticancer Research, vol. 25, no. 3, pp. 2141-2144, 2005.
[18] R. C. Ferreira, P. S. de Matos, R. L. Adam, N. J. Leite, and K. Metze, “Application of the Minkowski-Bouligand fractal dimension for the differential diagnosis of thyroid follicular neoplasias,” Cellular Oncology, vol. 28, no. 5-6, pp. 331-333, 2006.
[19] J. M. Adams, A. W. Harris, and C. A. Pinkert, “The c-myc oncogene driven by immunoglobulin enhancers induces lymphoid malignancy in transgenic mice,” Nature, vol. 318, no. 6046, pp. 533-538, 1985.
[20] L. Pontrjagin and L. Schnirelmann, “Sur une propriété métrique de la dimension,” Annals of Mathematics, vol. 33, pp. 156-162, 1932. · Zbl 0003.33101 · doi:10.2307/1968109
[21] A. N. Kolmogorov and V. M. Tihomiroff, “\epsilon > -Entropy and \epsilon -capacity of sets in functional spaces,” Uspekhi Mat. Nauk, vol. 14, no. 2, pp. 3-86, 1949.
[22] J. Patrick Fitch and B. Sokhansanj, “Genomic engineering: moving beyond DNA sequence to function,” Proceedings of the IEEE, vol. 88, no. 12, pp. 1949-1971, 2000. · doi:10.1109/5.899061
[23] H. Gee, “A journey into the genome: what’s there,” Nature, 2001.
[24] P. D. Cristea, “Large scale features in DNA genomic signals,” Signal Processing, vol. 83, no. 4, pp. 871-888, 2003. · Zbl 1144.62353 · doi:10.1016/S0165-1684(02)00477-2
[25] H. Herzel, E. N. Trifonov, O. Weiss, and I. Große, “Interpreting correlations in biosequences,” Physica A, vol. 249, no. 1-4, pp. 449-459, 1998. · doi:10.1016/S0378-4371(97)00505-0
[26] W. Li, “The study of correlation structures of DNA sequences: a critical review,” Computers and Chemistry, vol. 21, no. 4, pp. 257-271, 1997. · doi:10.1016/S0097-8485(97)00022-3
[27] W. Li and K. Kaneko, “Long-range correlations and partial spectrum in a noncoding DNA sequence,” Europhysics Letters, vol. 17, pp. 655-660, 1992. · doi:10.1209/0295-5075/17/7/014
[28] C. K. Peng, S. V. Buldyrev, A. L. Goldberger et al., “Long-range correlations in nucleotide sequences,” Nature, vol. 356, no. 6365, pp. 168-170, 1992. · doi:10.1038/356168a0
[29] C. K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L. Goldberger, “Mosaic organization of DNA nucleotides,” Physical Review E, vol. 49, no. 2, pp. 1685-1689, 1994. · doi:10.1103/PhysRevE.49.1685
[30] O. Weiss and H. Herzel, “Correlations in protein sequences and property codes,” Journal of Theoretical Biology, vol. 190, no. 4, pp. 341-353, 1998. · doi:10.1006/jtbi.1997.0560
[31] Z. G. Yu, V. V. Anh, and B. Wang, “Correlation property of length sequences based on global structure of the complete genome,” Physical Review E, vol. 63, no. 1, Article ID 011903, 2001. · doi:10.1103/PhysRevE.63.011903
[32] P. P. Vaidyanathan and B. J. Yoon, “The role of signal-processing concepts in genomics and proteomics,” Journal of the Franklin Institute, vol. 341, no. 1-2, pp. 111-135, 2004. · Zbl 1094.92044 · doi:10.1016/j.jfranklin.2003.12.001
[33] P. Bernaola-Galván, R. Román-Roldán, and J. L. Oliver, “Compositional segmentation and long-range fractal correlations in DNA sequences,” Physical Review E, vol. 53, no. 5, pp. 5181-5189, 1996. · doi:10.1103/PhysRevE.53.5181
[34] W. Li and J. Bentley, “The complexity of DNA: the measure of compositional heterogenity in DNA sequence and measures of complexity,” Complexity, vol. 3, pp. 33-37, 1997.
[35] S. Karlin and V. Brendel, “Patchiness and correlations in DNA sequences,” Science, vol. 259, no. 5095, pp. 677-680, 1993. · doi:10.1126/science.8430316
[36] J. M. Bennett, M. L. Young, J. W. Andersen et al., “Long-term survival in acute myeloid leukemia: the Eastern Cooperative Oncology Group experience,” Cancer, vol. 80, no. 11, pp. 2205-2209, 1997.
[37] E. Schrödinger, What is Life? Physical Aspects of Living Cell, Cambridge University Press, Cambridge, UK, 1948.
[38] National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/genbank/.
[39] Universal Protein Resource, http://www.uniprot.org/help/about.
[40] Gene Location, Weizmann Institute of Science, http://genecards.weizmann.ac.il/geneloc/.
[41] e!Ensemble, Ensembl project, EMBL-EBI & Wellcome Trust Sanger Institute, http://www.ensemble.org.
[42] H. Avet-Loiseau, T. Facon, A. Daviet et al., “14q32 translocations and monosomy 13 observed in monoclonal gammopathy of undetermined significance delineate a multistep process for the oncogenesis of multiple myeloma,” Cancer Research, vol. 59, no. 18, pp. 4546-4550, 1999.
[43] J. Drach, J. Schuster, H. Nowotny et al., “Multiple myeloma: high incidence of chromosomal aneuploidy as detected by interphase fluorescence in situ hybridization,” Cancer Research, vol. 55, no. 17, pp. 3854-3859, 1995.
[44] M. Flactif, M. Zandecki, J. L. Laï et al., “Interphase fluorescence in situ hybridization (FISH) as a powerful tool for the detection of aneuploidy in multiple myeloma,” Leukemia, vol. 9, no. 12, pp. 2109-2114, 1995.
[45] R. Fonseca, G. J. Ahmann, S. M. Jalal et al., “Chromosomal abnormalities in systemic amyloidosis,” British Journal of Haematology, vol. 103, no. 3, pp. 704-710, 1998. · doi:10.1046/j.1365-2141.1998.01034.x
[46] M. Zandecki, J.-L. Laï, F. Geneviève et al., “Several cytogenetic subclones may be identified within plasma cells from patients with monoclonal gammopathy of undetermined significance, both at diagnosis and during the indolent course of this condition,” Blood, vol. 90, no. 9, pp. 3682-3690, 1997.
[47] G. W. Dewald, R. A. Kyle, G. A. Hicks, and P. R. Greipp, “The clinical significance of cytogenetic studies in 100 patients with multiple myeloma, plasma cell leukemia, or amyloidosis,” Blood, vol. 66, no. 2, pp. 380-390, 1985.
[48] B. Barlogie, J. Epstein, P. Selvanayagam, and R. Alexanian, “Plasma cell myeloma-New biological insights and advances in therapy,” Blood, vol. 73, no. 4, pp. 865-879, 1989.
[49] W. Liang, J. E. Hopper, and J. D. Rowley, “Karyotypic abnormalities and clinical aspects of patients with multiple myeloma and related paraproteinemic disorders,” Cancer, vol. 44, no. 2, pp. 630-644, 1979.
[50] G. Gahrton, L. Zech, and K. Nillsson, “2 Translocations, t(11;14) and t(1;6), in a patient with plasma cell leukaemia and 2 populations of plasma cells,” Scandinavian Journal of Haematology, vol. 24, no. 1, pp. 42-46, 1980.
[51] G. J. Morgan, F. E. Davies, and M. Linet, “Myeloma aetiology and epidemiology,” Biomedicine and Pharmacotherapy, vol. 56, no. 5, pp. 223-234, 2002. · doi:10.1016/S0753-3322(02)00194-4
[52] H. Avet-Loiseau, M. Attal, P. Moreau et al., “Genetic abnormalities and survival in multiple myeloma: the experience of the Intergroupe Francophone du Myélome,” Blood, vol. 109, no. 8, pp. 3489-3495, 2007. · doi:10.1182/blood-2006-08-040410
[53] J. R. Sawyer, J. A. Waldron, S. Jagannath, and B. Barlogie, “Cytogenetic findings in 200 patients with multiple myeloma,” Cancer Genetics and Cytogenetics, vol. 82, no. 1, pp. 41-49, 1995. · doi:10.1016/0165-4608(94)00284-I
[54] O. Landgren, R. A. Kyle, R. M. Pfeiffer et al., “Monoclonal gammopathy of undetermined significance (MGUS) consistently precedes multiple myeloma: a prospective study,” Blood, vol. 113, no. 22, pp. 5412-5417, 2009. · doi:10.1182/blood-2008-12-194241
[55] S. M. C. Langemeijer, R. P. Kuiper, M. Berends et al., “Acquired mutations in TET2 are common in myelodysplastic syndromes,” Nature Genetics, vol. 41, no. 7, pp. 838-842, 2009. · doi:10.1038/ng.391
[56] M. Ko, Y. Huang, A. M. Jankowska et al., “Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2,” Nature, vol. 468, no. 7325, pp. 839-843, 2010. · doi:10.1038/nature09586
[57] R. B. Lorsback, J. Moore, S. Mathew, S. C. Raimondi, S. T. Mukatira, and J. R. Downing, “TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;23) [3],” Leukemia, vol. 17, no. 3, pp. 637-641, 2003. · doi:10.1038/sj.leu.2402834
[58] S. Y. Chen and Q. Guan, “Parametric shape representation by a deformable NURBS model for cardiac functional measurements,” IEEE Transactions on Biomedical Engineering, vol. 58, no. 3, part 1, pp. 480-487, 2011. · doi:10.1109/TBME.2010.2087331
[59] S. Chen, J. Zhang, H. Zhang et al., “Myocardial motion analysis for determination of tei-index of human heart,” Sensors, vol. 10, no. 12, pp. 11428-11439, 2010. · doi:10.3390/s101211428