[1] |
P. Varaiya, “Smart cars on smart roads: problems of control,” IEEE Transactions on Automatic Control, vol. 38, no. 2, pp. 195-207, 1993.
· doi:10.1109/9.250509 |

[2] |
W. S. Wong and R. W. Brockett, “Systems with finite communication bandwidth constraints. I. State estimation problems,” IEEE Transactions on Automatic Control, vol. 42, no. 9, pp. 1294-1299, 1997. · Zbl 0952.93125
· doi:10.1109/9.623096 |

[3] |
C. Tomlin, G. J. Pappas, and S. Sastry, “Conflict resolution for air traffic management: a study in multiagent hybrid systems,” IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 509-521, 1998. · Zbl 0904.90113
· doi:10.1109/9.664154 |

[4] |
D. Liberzon and A. S. Morse, “Basic problems in stability and design of switched systems,” IEEE Control Systems Magazine, vol. 19, no. 5, pp. 59-70, 1999.
· doi:10.1109/37.793443 |

[5] |
J. Zhao and D. J. Hill, “Vector L2-gain and stability of feedback switched systems,” Automatica, vol. 45, no. 7, pp. 1703-1707, 2009. · Zbl 1184.93103
· doi:10.1016/j.automatica.2009.02.026 |

[6] |
X.-M. Sun, J. Zhao, and D. J. Hill, “Stability and L2-gain analysis for switched delay systems: a delay-dependent method,” Automatica, vol. 42, no. 10, pp. 1769-1774, 2006. · Zbl 1114.93086
· doi:10.1016/j.automatica.2006.05.007 |

[7] |
M. S. Branicky, “Multiple Lyapunov functions and other analysis tools for switched and hybrid systems,” IEEE Transactions on Automatic Control, vol. 43, no. 4, pp. 475-482, 1998. · Zbl 0904.93036
· doi:10.1109/9.664150 |

[8] |
Y. G. Sun, L. Wang, and G. Xie, “Stability of switched systems with time-varying delays: delay-dependent common Lyapunov functional approach,” in Proceedings of the American Control Conference, pp. 1544-1549, Minneapolis, Minn, USA, June 2006. |

[9] |
G. Zhai, B. Hu, K. Yasuda, and A. N. Michel, “Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach,” in Proceedings of the American Control Conference, pp. 200-204, June 2000. · Zbl 1022.93043 |

[10] |
J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time,” in Proceedings of the 38th IEEE Conference on Decision and Control (CDC ’99), pp. 2655-2660, December 1999. |

[11] |
M. Liu, D. W. C. Ho, and Y. Niu, “Stabilization of Markovian jump linear system over networks with random communication delay,” Automatica, vol. 45, no. 2, pp. 416-421, 2009. · Zbl 1158.93412
· doi:10.1016/j.automatica.2008.06.023 |

[12] |
D. Wang, P. Shi, J. Wang, and W. Wang, “Delay-dependent exponential H\infty filtering for discrete-time switched delay systems,” International Journal of Robust and Nonlinear Control, vol. 22, no. 13, pp. 1522-1536, 2012. · Zbl 1287.93096
· doi:10.1002/rnc.1764 |

[13] |
D. Wang, W. Wang, and P. Shi, “Delay-dependent exponential stability for switched delay systems,” Optimal Control Applications & Methods, vol. 30, no. 4, pp. 383-397, 2009.
· doi:10.1002/oca.856 |

[14] |
J. Lian, Z. Feng, and P. Shi, “Observer design for switched recurrent neural networks: an average dwell time approach,” IEEE Transactions on Neural Networks, vol. 22, no. 10, pp. 1547-1556, 2011.
· doi:10.1109/TNN.2011.2162111 |

[15] |
W. M. Xiang, J. Xiao, and C. Y. Xiao, “Finite-time stability analysis for switched linear systems,” in Proceedings of the Chinese Control and Decision Conference, pp. 3115-3120, Mianyang, China, 2011. |

[16] |
X. Lin, H. Du, and S. Li, “Set finite-time stability of a class of switched systems,” in Proceedings of the 8th World Congress on Intelligent Control and Automation (WCICA ’10), pp. 7073-7078, Jinan, China, July 2010.
· doi:10.1109/WCICA.2010.5554293 |

[17] |
H. Du, X. Lin, and S. Li, “Finite-time stability and stabilization of switched linear systems,” in Proceedings of the 48th IEEE Conference on Decision and Control Held Jointly with 28th Chinese Control Conference (CDC/CCC ’09), pp. 1938-1943, Shanghai, China, December 2009.
· doi:10.1109/CDC.2009.5399646 |

[18] |
X. Lin, H. Du, and S. Li, “Finite-time boundedness and L2-gain analysis for switched delay systems with norm-bounded disturbance,” Applied Mathematics and Computation, vol. 217, no. 12, pp. 5982-5993, 2011. · Zbl 1218.34082
· doi:10.1016/j.amc.2010.12.032 |

[19] |
W. M. Xiang and Y. C. Zhao, “Finite-time control for switched discrete-time system,” Energy Procedia, vol. 13, pp. 4486-4491, 2011. · Zbl 1236.40006 |

[20] |
S. Gao and X. L. Zhang, “Fault-tolerant control with finite-time stability for switched linear systems,” in Proceedings of the 6th International Conference on Computer Science & Education, pp. 923-927, 2011. |

[21] |
H. Liu, Y. Shen, and X. D. Zhao, “Delay-dependent observer-based H\infty finite-time control for switched systems with time-varying delay,” Nonlinear Analysis: Hybrid Systems, vol. 6, pp. 885-898, 2012. · Zbl 1244.93045 |

[22] |
W. Xiang and J. Xiao, “H\infty finite-time control for switched nonlinear discrete-time systems with norm-bounded disturbance,” Journal of the Franklin Institute, vol. 348, no. 2, pp. 331-352, 2011. · Zbl 1214.93043
· doi:10.1016/j.jfranklin.2010.12.001 |

[23] |
Z. R. Xiang and R. H. Wang, “Robust control for uncertain switched non-linear systems with time delay under asynchronous switching,” IET Control Theory & Applications, vol. 3, no. 8, pp. 1041-1050, 2009.
· doi:10.1049/iet-cta.2008.0150 |

[24] |
L. Zhang and P. Shi, “Stability, L2-gain and asynchronous H\infty control of discrete-time switched systems with average dwell time,” IEEE Transactions on Automatic Control, vol. 54, no. 9, pp. 2192-2199, 2009.
· doi:10.1109/TAC.2009.2026841 |

[25] |
L. Zhang and H. Gao, “Asynchronously switched control of switched linear systems with average dwell time,” Automatica, vol. 46, no. 5, pp. 953-958, 2010. · Zbl 1191.93068
· doi:10.1016/j.automatica.2010.02.021 |

[26] |
Z. Xiang and Q. Chen, “Robust reliable control for uncertain switched nonlinear systems with time delay under asynchronous switching,” Applied Mathematics and Computation, vol. 216, no. 3, pp. 800-811, 2010. · Zbl 1217.93046
· doi:10.1016/j.amc.2010.01.084 |

[27] |
J. Lin, S. Fei, and Z. Gao, “Stabilization of discrete-time switched singular time-delay systems under asynchronous switching,” Journal of the Franklin Institute, vol. 349, no. 5, pp. 1808-1827, 2012. · Zbl 1254.93132 |

[28] |
D. Xie, Q. Wang, and Y. Wu, “Average dwell-time approach to L2 gain control synthesis of switched linear systems with time delay in detection of switching signal,” IET Control Theory & Applications, vol. 3, no. 6, pp. 763-771, 2009.
· doi:10.1049/iet-cta.2008.0209 |

[29] |
C. S. Tseng and B. S. Chen, “L\infty gain fuzzy control for nonlinear dynamic systems with persistent bounded disturbances,” in Proceedings of the IEEE International Conference on Fuzzy Systems, vol. 2, pp. 783-788, Budapest, Hungary, July 2004. |

[30] |
D. Liberzon, Switching in Systems and Control, Birkhäauser, Boston, Mass, USA, 2003. · Zbl 1036.93001 |

[31] |
Z. R. Xiang and R. H. Wang, “Robust stabilization of switched non-linear systems with time-varying delays under asynchronous switching,” Proceedings of the Institution of Mechanical Engineers I, vol. 223, no. 8, pp. 1111-1128, 2009.
· doi:10.1243/09596518JSCE809 |