×

Fault diagnosis observer design for discrete-time delayed complex interconnected networks with linear coupling. (English) Zbl 1264.93112

Summary: Fault diagnosis for a class of discrete-time delayed complex interconnected networks with linear coupling in the case of actuator fault is studied. For the case of unavailability of network state, a state observer is first designed. Then a fault diagnosis observer is designed to detect the actuator fault on the basis of online adaptive approximator, which can approximate the unmodeled dynamics of the complex networks. Lastly, by choosing a suitable threshold, the actuator fault can be detected. A numerical simulation is used to show the effectiveness of the proposed method.

MSC:

93C40 Adaptive control/observation systems
93C55 Discrete-time control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] J. Chen and R. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer, Boston, Mass, USA, 1999. · Zbl 0920.93001
[2] S. Narasimhan and G. Biswas, “Model-based diagnosis of hybrid systems,” IEEE Transactions on Systems, Man, and Cybernetics A, vol. 37, no. 3, pp. 348-361, 2007. · doi:10.1109/TSMCA.2007.893487
[3] J. Stoustrup and H. H. Niemann, “Fault estimation-a standard problem approach,” International Journal of Robust and Nonlinear Control, vol. 12, no. 8, pp. 649-673, 2002. · Zbl 1011.93049 · doi:10.1002/rnc.716
[4] F. Basile, P. Chiacchio, and G. De Tommasi, “An efficient approach for online diagnosis of discrete event systems,” IEEE Transactions on Automatic Control, vol. 54, no. 4, pp. 748-759, 2009. · Zbl 1367.93358 · doi:10.1109/TAC.2009.2014932
[5] N. Meskin and K. Khorasani, “Robust fault detection and isolation of time-delay systems using a geometric approach,” Automatica, vol. 45, no. 6, pp. 1567-1573, 2009. · Zbl 1166.93312 · doi:10.1016/j.automatica.2009.02.019
[6] Q. Yang and Y. Sun, “Automated fault accommodation for discrete-time systems using online approximators,” in Proceedings of the 30th Chinese Control Conference, Yantai, China, July 2011.
[7] R. M. G. Ferrari, T. Parisini, and M. M. Polycarpou, “Distributed fault diagnosis of large-scale discrete-time nonlinear systems: new results on the isolation problem,” in Proceedings of the 49th IEEE Conference on Decision and Control (CDC ’10), pp. 1619-1626, Hilton Atlanta Hotel, Atlanta, Ga, USA, December 2010. · doi:10.1109/CDC.2010.5716996
[8] H. Yang, B. Jiang, and V. Cocquempot, “Supervisory fault-tolerant regulation for nonlinear systems,” Nonlinear Analysis, vol. 12, no. 2, pp. 789-798, 2011. · Zbl 1219.93050 · doi:10.1016/j.nonrwa.2010.08.006
[9] I. Samy, I. Postlethwaite, and D.-W. Gu, “Survey and application of sensor fault detection and isolation schemes,” Control Engineering Practice, vol. 19, no. 7, pp. 658-674, 2011. · doi:10.1016/j.conengprac.2011.03.002
[10] R. Patton, P. Frank, and R. Clark, Fault Diagnosis in Dynamic Systems: Theory and Application, Prentice Hall, 1989.
[11] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault Tolerant Control, Berlin, Germany, 2006. · Zbl 1126.93004
[12] R. Isermann, “Process fault detection based on modeling and estimation methods-a survey,” Automatica, vol. 20, no. 4, pp. 387-404, 1984. · Zbl 0539.90037 · doi:10.1016/0005-1098(84)90098-0
[13] J. J. Gertler, “Survey of model-based failure detection and isolation in complex plants,” IEEE Control Systems Magazine, vol. 8, no. 6, pp. 3-11, 1988.
[14] P. M. Frank, “Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy. A survey and some new results,” Automatica, vol. 26, no. 3, pp. 459-474, 1990. · Zbl 0713.93052 · doi:10.1016/0005-1098(90)90018-D
[15] V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N. Kavuri, “A review of process fault detection and diagnosis part I: quantitative model-based methods,” Computers and Chemical Engineering, vol. 27, no. 3, pp. 293-311, 2003. · doi:10.1016/S0098-1354(02)00160-6
[16] B. Jiang, M. Staroswiecki, and V. Cocquempot, “Fault accommodation for nonlinear dynamic systems,” IEEE Transactions on Automatic Control, vol. 51, no. 9, pp. 1578-1583, 2006. · Zbl 1366.93694 · doi:10.1109/TAC.2006.878732
[17] B. Jiang and F. N. Chowdhury, “Fault estimation and accommodation for linear MIMO discrete-time systems,” IEEE Transactions on Control Systems Technology, vol. 13, no. 3, pp. 493-499, 2005. · doi:10.1109/TCST.2004.839569
[18] K. Zhang, B. Jiang, and P. Shi, “Fast fault estimation and accommodation for dynamical systems,” IET Control Theory and Applications, vol. 3, no. 2, pp. 189-199, 2009. · doi:10.1049/iet-cta:20070283
[19] C. Langbort, R. S. Chandra, and R. D’Andrea, “Distributed control design for systems interconnected over an arbitrary graph,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1502-1519, 2004. · Zbl 1365.93141 · doi:10.1109/TAC.2004.834123
[20] R. M. G. Ferrari, T. Parisini, and M. M. Polycarpou, “Distributed fault diagnosis with overlapping decompositions: an adaptive approximation approach,” IEEE Transactions on Automatic Control, vol. 54, no. 4, pp. 794-799, 2009. · Zbl 1367.93044 · doi:10.1109/TAC.2008.2009591
[21] H. Zhang, D. Yang, and T. Chai, “Guaranteed cost networked control for T-S fuzzy systems with time delays,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 37, no. 2, pp. 160-172, 2007. · doi:10.1109/TSMCC.2006.886983
[22] Z. Wang, Y. Wang, and Y. Liu, “Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time delays,” IEEE Transactions on Neural Networks, vol. 21, no. 1, pp. 11-25, 2010. · doi:10.1109/TNN.2009.2033599
[23] Z. Li and G. Chen, “Global synchronization and asymptotic stability of complex dynamical networks,” IEEE Transactions on Circuits and Systems II, vol. 53, no. 1, pp. 28-33, 2006. · doi:10.1109/TCSII.2005.854315
[24] D. Ding, Z. Wang, B. Shen, and H. Shu, “H\infty state estimation for discrete-time complex networks with randomly occurring sensor saturations and randomly varying sensor delays,” IEEE Transactions Neural Networks and Learning Systems, vol. 23, no. 5, pp. 725-726, 2012.
[25] X. F. Wang and G. Chen, “Complex networks: small-world, scale-free and beyond,” IEEE Circuits and Systems Magazine, vol. 3, no. 1, pp. 6-20, 2003. · doi:10.1109/MCAS.2003.1228503
[26] Y. Liu, Z. Wang, J. Liang, and X. Liu, “Synchronization and state estimation for discrete-time complex networks with distributed delays,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 38, no. 5, pp. 1314-1325, 2008. · doi:10.1109/TSMCB.2008.925745
[27] Z. Wang, H. Zhang, and B. Jiang, “LMI-based approach for global asymptotic stability analysis of recurrent neural networks with various delays and structures,” IEEE Transactions on Neural Networks, vol. 22, no. 7, pp. 1032-1045, 2011. · doi:10.1109/TNN.2011.2131679
[28] D. Gong, H. Zhang, Z. Wang, and D. Ma, “Synchronization criteria for an array of neutral-type neural networks with hybrid coupling: a novel analysis approach,” Neural Processing Letters, vol. 35, no. 1, pp. 29-45, 2012.
[29] D. Gong, H. Zhang, Z. Wang, and B. Huang, “Novel synchronization analysis for complex networks with hybrid coupling by handling multitude Kronecker product terms,” Neurocomputing, vol. 82, pp. 14-20, 2012.
[30] X. Jin and G. Yang, “Adaptive synchronization of a class of uncertain complex networks against network deterioration,” IEEE Transactions on Circuits and Systems I, vol. 58, no. 6, pp. 1396-1409, 2011. · doi:10.1109/TCSI.2010.2097691
[31] X. Jin, G. Yang, and W. Che, “Adaptive pinning control of deteriorated nonlinear coupling networks with circuit realization,” IEEE Transactions on Neural Networks and Learning Systems, vol. 23, no. 9, pp. 1345-1355, 2012.
[32] Y.-W. Wang, J.-W. Xiao, and H. O. Wang, “Global synchronization of complex dynamical networks with network failures,” International Journal of Robust and Nonlinear Control, vol. 20, no. 15, pp. 1667-1677, 2010. · Zbl 1204.93061 · doi:10.1002/rnc.1537
[33] K. Zhang and L. Li, “Robust adaptive decentralized control for a class of networked large-scale systems with sensor network failures,” in Proceeding of the Chinese Control and Decision Conference (CCDC ’11), pp. 2366-2370, Mianyang, China, 2011.
[34] H. Zhang and Y. Quan, “Modeling, identification, and control of a class of nonlinear systems,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 2, pp. 349-354, 2001. · Zbl 1041.93537 · doi:10.1109/91.919256
[35] M. M. Polycarpou and A. J. Helmicki, “Automated fault detection and accommodation: a learning systems approach,” IEEE Transactions on Systems, Man and Cybernetics, vol. 25, no. 11, pp. 1447-1458, 1995. · doi:10.1109/21.467710
[36] A. T. Vemuri and M. M. Polycarpou, “Robust nonlinear fault diagnosis in input-output systems,” International Journal of Control, vol. 68, no. 2, pp. 343-360, 1997. · Zbl 0887.93022 · doi:10.1080/002071797223659
[37] A. B. Trunov and M. M. Polycarpou, “Automated fault diagnosis in nonlinear multivariable systems using a learning methodology,” IEEE Transactions on Neural Networks, vol. 11, no. 1, pp. 91-101, 2000. · doi:10.1109/72.822513
[38] A. T. Vemuri, “Sensor bias fault diagnosis in a class of nonlinear systems,” IEEE Transactions on Automatic Control, vol. 46, no. 6, pp. 949-954, 2001. · Zbl 1052.93023 · doi:10.1109/9.928602
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.