zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of discontinuous neural networks with delays via adaptive control. (English) Zbl 1264.93114
Summary: The drive-response synchronization of delayed neural networks with discontinuous activation functions is investigated via adaptive control. The synchronization of this paper means that the synchronization error approaches to zero for almost all time as time goes to infinity. The discontinuous activation functions are assumed to be monotone increasing which can be unbounded. Due to the mild condition on the discontinuous activations, adaptive control technique is utilized to control the response system. Under the framework of Filippov solution, by using Lyapunov function and chain rule of differential inclusion, rigorous proofs are given to show that adaptive control can realize complete synchronization of the considered model. The results of this paper are also applicable to continuous neural networks, since continuous function is a special case of discontinuous function. Numerical simulations verify the effectiveness of the theoretical results. Moreover, when there are parameter mismatches between drive and response neural networks with discontinuous activations, numerical example is also presented to demonstrate the complete synchronization by using discontinuous adaptive control.

MSC:
93C40Adaptive control systems
WorldCat.org
Full Text: DOI
References:
[1] P. Zhou and Y. X. Cao, “Function projective synchronization between fractional-order chaotic systems and integer-order chaotic systems,” Chinese Physics B, vol. 19, no. 10, Article ID 100507, 2010. · doi:10.1088/1674-1056/19/10/100507
[2] L. Pan and J. Cao, “Exponential synchronization for impulsive dynamical networks,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 232794, 20 pages, 2012. · Zbl 1248.93127 · doi:10.1155/2012/232794
[3] P. Zhou, R. Ding, and Y. Cao, “Multi drive-one response synchronization for fractional-order chaotic systems,” Nonlinear Dynamics, vol. 70, no. 2, pp. 1263-1271, 2012. · doi:10.1007/s11071-012-0531-y
[4] S. Sundar and A. A. Minai, “Synchronization of randomly multiplexed chaotic systems with application to communication,” Physical Review Letters, vol. 85, no. 25, pp. 5456-5459, 2000. · doi:10.1103/PhysRevLett.85.5456
[5] S. Bowong, F. M. Moukam Kakmeni, and H. Fotsin, “A new adaptive observer-based synchronization scheme for private communication,” Physics Letters, Section A, vol. 355, no. 3, pp. 193-201, 2006. · Zbl 1139.93017 · doi:10.1016/j.physleta.2006.02.035
[6] X. Yang, J. Cao, and J. Lu, “Stochastic synchronization of complex networks with nonidentical nodes via hybrid adaptive and impulsive control,” IEEE Transactions on Circuits and Systems I, vol. 59, no. 2, pp. 371-384, 2012. · doi:10.1109/TCSI.2011.2163969
[7] X. Yang, J. Cao, Y. Long, and W. Rui, “Adaptive lag synchronization for competitive neural networks with mixed delays and uncertain hybrid perturbations,” IEEE Transactions on Neural Networks, vol. 21, no. 10, pp. 1656-1667, 2010. · doi:10.1109/TNN.2010.2068560
[8] E. M. Shahverdiev, S. Sivaprakasam, and K. A. Shore, “Lag synchronization in time-delayed systems,” Physics Letters, Section A, vol. 292, no. 6, pp. 320-324, 2002. · Zbl 0979.37022 · doi:10.1016/S0375-9601(01)00824-6
[9] T. Huang, C. Li, W. Yu, and G. Chen, “Synchronization of delayed chaotic systems with parameter mismatches by using intermittent linear state feedback,” Nonlinearity, vol. 22, no. 3, pp. 569-584, 2009. · Zbl 1167.34386 · doi:10.1088/0951-7715/22/3/004
[10] X. Liu, T. Chen, J. Cao, and W. Lu, “Dissipativity and quasi-synchronization for neural networks with discontinuous activations and parameters,” Neural Networks, vol. 24, pp. 1013-1021, 2011. · Zbl 1264.93048
[11] P. Zhou and W. Zhu, “Function projective synchronization for fractional-order chaotic systems,” Nonlinear Analysis: Real World Applications, vol. 12, no. 2, pp. 811-816, 2011. · Zbl 1209.34065 · doi:10.1016/j.nonrwa.2010.08.008
[12] X. Wu, C. Xu, J. Feng, Y. Zhao, and X. Zhou, “Generalized projective synchronization between two different neural networks with mixed time delays,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 153542, 19 pages, 2012. · Zbl 1244.93128 · doi:10.1155/2012/153542
[13] P. Zhou, R. Ding, and Y. Cao, “Hybrid projective synchronization for two identical fractional-order chaotic systems,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 768587, 11 pages, 2012. · Zbl 1248.93130 · doi:10.1155/2012/768587
[14] N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, “Generalized synchronization of chaos in directionally coupled chaotic systems,” Physical Review E, vol. 51, no. 2, pp. 980-994, 1995. · doi:10.1103/PhysRevE.51.980
[15] X. Yang, Q. Zhu, and C. Huang, “Generalized lag-synchronization of chaotic mix-delayed systems with uncertain parameters and unknown perturbations,” Nonlinear Analysis: Real World Applications, vol. 12, no. 1, pp. 93-105, 2011. · Zbl 1203.93125 · doi:10.1016/j.nonrwa.2010.05.037
[16] B. Xin and T. Chen, “Projective synchronization of N-dimensional chaotic fractional-order systems via linear state error feedback control,” Discrete Dynamics in Nature and Society, Article ID 191063, 10 pages, 2012. · Zbl 1248.93140
[17] X. Yang and J. Cao, “Adaptive pinning synchronization of complex networks with stochastic perturbations,” Discrete Dynamics in Nature and Society, vol. 2010, Article ID 416182, 21 pages, 2010. · Zbl 1198.34090 · doi:10.1155/2010/416182 · eudml:230113
[18] H. Hu, “On stability of nonlinear continuous-time neural networks with delay,” IEEE Transactions on Neural Networks, vol. 13, pp. 1135-1143, 2000. · doi:10.1016/S0893-6080(00)00076-9
[19] M. Forti and P. Nistri, “Global convergence of neural networks with discontinuous neuron activations,” IEEE Transactions on Circuits and Systems I, vol. 50, no. 11, pp. 1421-1435, 2003. · doi:10.1109/TCSI.2003.818614
[20] M. Forti, P. Nistri, and D. Papini, “Global exponential stability and global convergence in finite time of delayed neural networks with infinite gain,” IEEE Transactions on Neural Networks, vol. 16, no. 6, pp. 1449-1463, 2005. · doi:10.1109/TNN.2005.852862
[21] Z. Guo and L. Huang, “LMI conditions for global robust stability of delayed neural networks with discontinuous neuron activations,” Applied Mathematics and Computation, vol. 215, no. 3, pp. 889-900, 2009. · Zbl 1187.34098 · doi:10.1016/j.amc.2009.06.013
[22] Y. Wang, Y. Zuo, L. Huang, and C. Li, “Global robust stability of delayed neural networks with discontinuous activation functions,” IET Control Theory & Applications, vol. 2, no. 7, pp. 543-553, 2008. · doi:10.1049/iet-cta:20070323
[23] Y. Zuo, Y. Wang, L. Huang, Z. Wang, X. Liu, and X. Wu, “Robust stability criterion for delayed neural networks with discontinuous activation functions,” Neural Processing Letters, vol. 29, no. 1, pp. 29-44, 2009. · doi:10.1007/s11063-008-9093-x
[24] X. Liu and J. Cao, “On periodic solutions of neural networks via differential inclusions,” Neural Networks, vol. 22, no. 4, pp. 329-334, 2009. · doi:10.1016/j.neunet.2008.11.003
[25] W. Lu and T. Chen, “Almost periodic dynamics of a class of delayed neural networks with discontinuous activations,” Neural Computation, vol. 20, no. 4, pp. 1065-1090, 2008. · Zbl 1146.68422 · doi:10.1162/neco.2008.10-06-364
[26] X. Liu and J. Cao, “Synchronization control of discontinuous neural networks via approximation,” in Proceedings of the Chinese Control and Decision Conference (CDC ’10), pp. 782-787, May 2010. · doi:10.1109/CCDC.2010.5498122
[27] B. Liu, W. Lu, and T. Chen, “New conditions on synchronization of networks of linearly coupled dynamical systems with non-Lipschitz right-hand sides,” Neural Networks, vol. 25, pp. 5-13, 2012. · Zbl 1258.93007
[28] A. F. Filippov, “Differential equations with discontinuous right-hand sides,” in Mathematics and Its Applications, Soviet Series, Kluwer Academic Publishers, Boston, Mass, USA. · Zbl 1098.34006
[29] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, NY, USA, 1983. · Zbl 0582.49001
[30] Z. Jiang and Z. Wu, Real Analysis, Higher Education Publisher, Beijing, China, 2nd edition, 2005.
[31] B. E. Paden and S. S. Sastry, “A calculus for computing Filippov’s differential inclusion with application to the variable structure control of robot manipulators,” IEEE Transactions on Circuits and Systems, vol. 34, no. 1, pp. 73-82, 1987. · Zbl 0632.34005 · doi:10.1109/TCS.1987.1086038
[32] M.-F. Danca, “Synchronization of switch dynamical systems,” International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, vol. 12, no. 8, pp. 1813-1826, 2002. · Zbl 1052.34047 · doi:10.1142/S0218127402005522
[33] L. Huang, J. Wang, and X. Zhou, “Existence and global asymptotic stability of periodic solutions for Hopfield neural networks with discontinuous activations,” Nonlinear Analysis. Real World Applications, vol. 10, no. 3, pp. 1651-1661, 2009. · Zbl 1160.92002 · doi:10.1016/j.nonrwa.2008.02.022
[34] M. F. Danca, “Controlling chaos in discontinuous dynamical systems,” Chaos, Solitons and Fractals, vol. 22, no. 3, pp. 605-612, 2004. · Zbl 1060.93520 · doi:10.1016/j.chaos.2004.02.032