[1] |
J. Gertler, Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker, New York, NY, USA, 1998. |

[2] |
J. Chen and R. Patton, Robust Model-Based Fault Diagnosis for Dynamic Systems, Kluwer Academic, Norwell, Mass, USA, 1999. · Zbl 1235.70110
· doi:10.1006/jsvi.1999.2399 |

[3] |
R. Patton, P. Frank, and R. Clark, Issues of Fault Diagnosis for Dynamic Systems, Springer, Berlin, Germany, 2000. |

[4] |
M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and J. Schröder, Diagnosis and Fault-Tolerant Control, Springer, Berlin, Germany, 2006. · Zbl 1126.93004
· doi:10.1007/978-3-540-35653-0 |

[5] |
R. Isermann, Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance, Springer, Berlin, Germany, 2006. |

[6] |
S. Ding, Model-Based Fault Diagnosis Techniques, Springer, Berlin, Germany, 2008. · Zbl 1243.68111
· doi:10.1016/j.jpdc.2008.07.008 |

[7] |
L. Ljung, System Identification: Theory for the User, Prentice Hall, Englewood Cliffs, NJ, USA, 1987. · Zbl 0615.93004 |

[8] |
P. V. Overschee and B. D. Moor, Subspace Identification for Linear Systems, Kluwer Academic, Dordrecht, The Netherlands, 1996. · Zbl 0888.93001 |

[9] |
W. Favoreel, B. De Moor, and P. Van Overschee, “Subspace state space system identification for industrial processes,” Journal of Process Control, vol. 10, no. 2-3, pp. 149-155, 2000.
· doi:10.1016/S0959-1524(99)00030-X |

[10] |
S. Qin, “An overview of subspace identification,” Computers and Chemical Engineering, vol. 30, no. 10-12, pp. 1502-1513, 2006.
· doi:10.1016/j.compchemeng.2006.05.045 |

[11] |
I. Hwang, S. Kim, Y. Kim, and C. E. Seah, “A survey of fault detection, isolation, and reconfiguration methods,” IEEE Transactions on Control Systems Technology, vol. 18, no. 3, pp. 636-653, 2010.
· doi:10.1109/TCST.2009.2026285 |

[12] |
V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. Kavuri, “A review of process fault detection and diagnosis. Part I: Quantitative model-based methods,” Computers and Chemical Engineering, vol. 27, pp. 293-311, 2003. |

[13] |
P. Zhang and S. Ding, “On fault detection in linear discrete-time, periodic, and sampled-data systems (survey),” Journal of Control Science and Engineering, vol. 2008, Article ID 849546, 19 pages, 2008. |

[14] |
B. Shen, Z. Wang, H. Shu, and G. Wei, “Robust H\infty finite-horizon filtering with randomly occurred nonlinearities and quantization effects,” Automatica, vol. 46, no. 11, pp. 1743-1751, 2010. · Zbl 1218.93103
· doi:10.1016/j.automatica.2010.06.041 |

[15] |
B. Shen, Z. Wang, and Y. S. Hung, “Distributed H\infty -consensus filtering in sensor networks with multiple missing measurements: the finite-horizon case,” Automatica, vol. 46, no. 10, pp. 1682-1688, 2010. · Zbl 1204.93122
· doi:10.1016/j.automatica.2010.06.025 |

[16] |
H. Dong, Z. Wang, D. W. C. Ho, and H. Gao, “Robust H\infty filtering for Markovian jump systems with randomly occurring nonlinearities and sensor saturation: the finite-horizon case,” IEEE Transactions on Signal Processing, vol. 59, no. 7, pp. 3048-3057, 2011.
· doi:10.1109/TSP.2011.2135854 |

[17] |
H. Dong, Z. Wang, J. Lam, and H. Gao, “Fuzzy-model-based robust fault detection with stochastic mixed time-delays and successive packet dropouts,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 42, no. 3, part B, pp. 365-376, 2012. |

[18] |
S. X. Ding, P. Zhang, B. Huang, and E. L. Ding, “Subspace method aided data-driven design of observer based fault detection systems,” in Proceedings of the 16th Triennial World Congress of International Federation of Automatic Control (IFAC ’05), pp. 167-172, Prague, Czech Republic, July 2005. |

[19] |
S. Ding, S. Yin, P. Zhang, E. Ding, and A. Naik, “An approach to data-driven adaptive residual generator design and implementation,” in Proceedings of the 7th IFAC Symposium on Fault Detection and Supervision and Safety of Technical Processes, Barcelona, Spain, 2009. |

[20] |
S. X. Ding, P. Zhang, A. Naik, E. L. Ding, and B. Huang, “Subspace method aided data-driven design of fault detection and isolation systems,” Journal of Process Control, vol. 19, no. 9, pp. 1496-1510, 2009.
· doi:10.1016/j.jprocont.2009.07.005 |

[21] |
S. Yin, A. Naik, and S. Ding, “Data-driven design of fault diagnosis scheme for periodic systems,” in Proceedings of the 7th Workshop on Advanced Control and Diagnosis, Zielona Gora, Poland, 2009.
· doi:10.1016/S0098-1354(02)00160-6 |

[22] |
S. Ding, S. Yin, Y. Wang, Y. Wang, Y. Yang, and B. Ni, “Data-driven design of observers and its applications,” in Proceedings of the 18th IFAC World Congress, Milano, Italy, 2011. |

[23] |
S. Ding, P. Zhang, E. Ding, P. Engel, and W. Gui, “A survey of the application of basic data-driven and model-based methods in process monitoring and fault diagnosis,” in Proceedings of the 18th IFAC World Congress, Milano, Italy, 2011. |

[24] |
L. Chiang, E. Russell, and R. Braatz, Fault Detection and Diagnosis in Industrial Systems, Springer, London, UK, 2001. · Zbl 1209.62296
· doi:10.1111/j.0006-341X.2001.00435.x |

[25] |
P. Ioannou and J. Sun, Robust Adaptive Control, Prentice Hall, 1996. · Zbl 0839.93002 |

[26] |
G. Tao, Adaptive Control Design and Analysis, Wiley-Interscience, Hoboken, NJ, USA, 2003. · Zbl 1061.93004
· doi:10.1002/0471459100 |

[27] |
K. Astrom and B. Wittenmark, Adaptive Control, Addison-Wesley, 1995. |

[28] |
B. W. Silverman, Density Estimation for Statistics and Data Analysis, Chapman & Hall, London, UK, 1986. · Zbl 0617.62042 |

[29] |
E. Martin and A. Morris, “Non-parametric confidence bounds for process performance monitoring charts,” Journal of Process Control, vol. 6, no. 6, pp. 349-358, 1996.
· doi:10.1016/0959-1524(96)00010-8 |

[30] |
X. Zhang, M. Polycarpou, and T. Parisini, “Design and analysis of fault isolation scheme for a class of uncertain nonlinear systems,” Annual Reviews in Control, vol. 32, pp. 107-121, 2008.
· doi:10.1016/j.arcontrol.2008.03.007 |