##
**Design of a Takagi-Sugeno fuzzy regulator for a set of operation points.**
*(English)*
Zbl 1264.93133

Summary: The paper proposes a new design method based on linear matrix inequalities (LMIs) for tracking constant signals (regulation) considering nonlinear plants described by the Takagi-Sugeno fuzzy models. The procedure consists in designing a single controller that stabilizes the system at operation points belonging to a certain range or region, without the need of remaking the design of the controller gains at each new chosen equilibrium point. The control system design of a magnetic levitator illustrates the proposed methodology.

### MSC:

93C42 | Fuzzy control/observation systems |

PDF
BibTeX
XML
Cite

\textit{M. P. A. Santim} et al., Math. Probl. Eng. 2012, Article ID 731298, 17 p. (2012; Zbl 1264.93133)

Full Text:
DOI

### References:

[1] | T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Transactions on Systems, Man and Cybernetics, vol. 15, no. 1, pp. 116-132, 1985. · Zbl 0576.93021 |

[2] | K. Y. Lian and J. J. Liou, “Output tracking control for fuzzy systems via output feedback design,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 5, pp. 628-639, 2006. · Zbl 05452672 |

[3] | G. Feng, “A survey on analysis and design of model-based fuzzy control systems,” IEEE Transactions on Fuzzy Systems, vol. 14, no. 5, pp. 676-697, 2006. · Zbl 05452695 |

[4] | C. Q. Andrea, J. O. P. Pinto, E. Assun, M. C. M. Teixeira, and L. J. Galotto, “Controle ótimo H\infty de sitemas não lineares com modelos fuzzy Takagi-Sugeno,” Sba: Controle & Automa, vol. 19, pp. 256-269, 2008 (Portuguese). |

[5] | P. C. Chen, C. W. Chen, and W. L. Chiang, “GA-based fuzzy sliding mode controller for nonlinear systems,” Mathematical Problems in Engineering, vol. 2008, Article ID 325859, 16 pages, 2008. · Zbl 1162.93367 |

[6] | J. Yu, J. Gao, Y. Ma, and H. Yu, “Adaptive fuzzy tracking control for a permanent magnet synchronous motor via backstepping approach,” Mathematical Problems in Engineering, vol. 2010, Article ID 391846, 13 pages, 2010. · Zbl 1191.93096 |

[7] | Y. T. Chang and B. S. Chen, “A fuzzy approach for robust reference-tracking-control design of nonlinear distributed parameter time-delayed systems and its application,” IEEE Transactions on Fuzzy Systems, vol. 18, no. 6, Article ID 5510143, pp. 1041-1057, 2010. |

[8] | K.-S. Shih, H. S. Li, and S.-H. Tsai, “New nonlinear controller for a class of chaotic systems based on adaptive backstepping fuzzy-immune control,” Mathematical Problems in Engineering, vol. 2011, Article ID 439324, 20 pages, 2011. · Zbl 1235.93149 |

[9] | C.-W. Chen, C.-W. Shen, C.-Y. Chen, and M.-J. Cheng, “Stability analysis of an oceanic structure using the Lyapunov method,” Engineering Computations, vol. 27, no. 2, pp. 186-204, 2010. · Zbl 1284.93137 |

[10] | C.-Y. Chen, J.-W. Lin, W.-I. Lee, and C.-W. Chen, “Fuzzy control for an oceanic structure: a case study in time-delay TLP system,” Journal of Vibration and Control, vol. 16, no. 1, pp. 147-160, 2010. · Zbl 1269.70047 |

[11] | S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, vol. 15, Society for Industrial and AppliedMathematics, Philadelphia, Pa, USA, 1994. · Zbl 0816.93004 |

[12] | D. D. \vSiljak and D. M. Stipanović, “Robust stabilization of nonlinear systems: the LMI approach,” Mathematical Problems in Engineering. Theory, Methods and Applications, vol. 6, no. 5, pp. 461-493, 2000. · Zbl 0968.93075 |

[13] | M. R. Moreira, E. I. Mainardi Jr, T. T. Esteves et al., “Stabilizability and disturbance rejection with state-derivative feedback,” Mathematical Problems in Engineering, vol. 2010, Article ID 123751, 12 pages, 2010. · Zbl 1222.93188 |

[14] | M. C. M. Teixeira, E. Assun, and R. G. Avellar, “On relaxed LMI-based designs for fuzzy regulators and fuzzy observers,” IEEE Transactions on Fuzzy Systems, vol. 11, no. 5, pp. 613-623, 2003. |

[15] | A. Sala and C. Ariño, “Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: applications of Polya’s theorem,” Fuzzy Sets and Systems, vol. 158, no. 24, pp. 2671-2686, 2007. · Zbl 1133.93348 |

[16] | C.-W. Chen, “Application of fuzzy-model-based control to nonlinear structural systems with time delay: an LMI method,” Journal of Vibration and Control, vol. 16, no. 11, pp. 1651-1672, 2010. · Zbl 1269.74164 |

[17] | K. Yeh, C.-Y. Chen, and C.-W. Chen, “Robustness design of time-delay fuzzy systems using fuzzy Lyapunov method,” Applied Mathematics and Computation, vol. 205, no. 2, pp. 568-577, 2008. · Zbl 1152.93040 |

[18] | P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox-For Use with Matlab, The Math Works, City, State, USA, 1995. |

[19] | J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11/12, no. 1-4, pp. 625-653, 1999. · Zbl 0973.90526 |

[20] | M. C. M. Teixeira, A. D. S. Lordelo, and E. Assun, On LMI Based Design of SPR Systems and Output Variable Structure Controllers, World Scientific Publishing Company, Singapore, Singapore, 2000. |

[21] | C.-W. Chen, “Stability analysis and robustness design of nonlinear systems: an NN-based approach,” Applied Soft Computing Journal, vol. 11, no. 2, pp. 2735-2742, 2011. · Zbl 1235.93224 |

[22] | C. W. Chen, “Modeling and fuzzy PDC control and its application to an oscillatory TLP structure,” Mathematical Problems in Engineering, vol. 2010, Article ID 120403, 13 pages, 2010. · Zbl 1191.93076 |

[23] | H. J. Marquez, Nonlinear Control Systems-Analysis and Design, Wiley, New Jersey, NJ, USA, 2003. · Zbl 1037.93003 |

[24] | K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs,” IEEE Transactions on Fuzzy Systems, vol. 6, no. 2, pp. 250-265, 1998. |

[25] | M. C. M. Teixeira and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Transactions on Fuzzy Systems, vol. 7, no. 2, pp. 133-142, 1999. |

[26] | T. Taniguchi, K. Tanaka, H. Ohtake, and H. O. Wang, “Model construction, rule reduction, and robust compensation for generalized form of Takagi-Sugeno fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 9, no. 4, pp. 525-538, 2001. |

[27] | L. A. Mozelli, R. M. Palhares, F. O. Souza, and E. M. A. M. Mendes, “Reducing conservativeness in recent stability conditions of TS fuzzy systems,” Automatica, vol. 45, no. 6, pp. 1580-1583, 2009. · Zbl 1166.93344 |

[28] | V. F. Montagner, R. C. L. F. Oliveira, and P. L. D. Peres, “Convergent LMI relaxations for quadratic stabilizability and H\infty control of Takagi-Sugeno fuzzy systems,” IEEE Transactions on Fuzzy Systems, vol. 17, no. 4, pp. 863-873, 2009. |

[29] | R. Cardim, Projeto de Controladores Baseados em LMIs: realimenta derivativa e sistemas chaveados utilizando estrutura variável, Ph.D. thesis, Faculdade de Engenharia, Unversidade Estadual Paulista, Ilha Solteira, Brazil, 2009. |

[30] | T. M. Guerra and L. Vermeiren, “LMI-based relaxed nonquadratic stabilization conditions for nonlinear systems in the Takagi-Sugeno’s form,” Automatica, vol. 40, no. 5, pp. 823-829, 2004. · Zbl 1050.93048 |

[31] | M. Klug, E. B. Castelan, and V. J. S. Leite, “A dynamic compensator for parameter-varying systems subject to actuator limitations applied to a T-S fuzzy system,” in Proceedings of the 18th IFAC World Congress, vol. 18, pp. 14495-14500, Milan, Italy, 2011. |

[32] | V. F. Montagner, R. C. L. F. Oliveira, V. J. S. Leite, and P. L. D. Peres, “LMI approach for H\infty linear parameter-varying state feedback control,” Control Theory and Applications, IEE Proceedings, vol. 152, no. 2, pp. 195-201, 2005. |

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.