zbMATH — the first resource for mathematics

Observer design for a class of nonlinear discrete-time systems with time-delay. (English) Zbl 1264.93144
Summary: The problem of observer design for a class of nonlinear discrete-time systems with time-delay is considered. A new approach of nonlinear observer design is proposed for this class of systems. Based on differential mean value theory, the error dynamic is transformed into linear parameter variable system. By using Lyapunov’s stability theory and Schur’s complement lemma, sufficient conditions expressed in terms of matrix inequalities are obtained to guarantee the observer error converges asymptotically to zero. Furthermore, the problem of observer design with affine gain is investigated. The computing method for observer gain matrix is given and it is also demonstrated that the observer error converges asymptotically to zero. Finally, an illustrative example is given to validate the effectiveness of the proposed method.

93C55 Discrete-time control/observation systems
93B07 Observability
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93D20 Asymptotic stability in control theory
93C83 Control/observation systems involving computers (process control, etc.)
93B40 Computational methods in systems theory (MSC2010)
Full Text: Link
[1] Abbaszadeh, M., Marquez, H. J.: Dynamical robust \(H_\infty\) filtering for nonlinear uncertain systems: An LMI approach. J. Franklin Inst. 347 (2010) , 1227-1241. · Zbl 1202.93157 · doi:10.1016/j.jfranklin.2010.05.016
[2] Cacace, F., Germani, A., Manes, C.: An observer for a class of nonlinear systems with time varying observation delay. Systems Control Lett. 59 (2010), 305-312. · Zbl 1191.93016 · doi:10.1016/j.sysconle.2010.03.005
[3] Dong, Y., Mei, S.: State observers for a class of multi-output nonlinear dynamic systems. Nonlinear Anal.: Theory, Methods and Appl. 74 (2011), 14, 4738-4745. · Zbl 1221.93035 · doi:10.1016/j.na.2011.04.042
[4] Dong, Y., Yang, Y.: Observer design for a class of multi-input multi-output nonlinear systems. Internat. J. Systems Sci. 42 (2011), 4, 695-703. · Zbl 1233.93014 · doi:10.1080/00207720903260143
[5] Germani, A., Manes, C., Pepe, P.: A new approach to state observation of nonlinear systems with delayed output. IEEE Trans. Automat. Control 47 (2002),1, 96-101. · Zbl 1364.93371 · doi:10.1109/9.981726
[6] Ibrir, S.: Observer-based control of a class of time-delay nonlinear systems having triangular structure. Automatica 47 (2011), 388-394. · Zbl 1207.93015 · doi:10.1016/j.automatica.2010.10.052
[7] Ibrir, S., Xie, W. F., Su, C. Y.: Observer design for discrete-time systems subject to time-delay nonlinearities. Internat. J. Systems Sci. 37 (2006), 9, 629-641. · Zbl 1101.93019 · doi:10.1080/00207720600774289
[8] Kwon, O. M., Park, J. H.: Exponential stability of uncertain dynamic systems including state delay. Appl. Math. Lett. 19 (2006), 901-907. · Zbl 1220.34095 · doi:10.1016/j.aml.2005.10.017
[9] Laila, D. S., Lovera, M., Astolfi, A.: A discrete-time observer design for spacecraft attitude determination using anorthogonality-preserving algorithm. Automatica 47 (2011), 5, 975-980. · Zbl 1233.93015 · doi:10.1016/j.automatica.2011.01.049
[10] Lu, G.: Robust observer design for Lipschitz nonlinear discrete-time systems with time-delay. Proc. 9th International Conference on Control, Automation, Robotics and Vision, Grand Hyatt Singapore 2006, pp. 1-5.
[11] Lu, G., Ho, D. W. C.: Robust \(H_\infty\) observer for a class of nonlinear discrete systems with time delay and parameter uncertainties. IEE Proc. Control Theory Appl. 151 (2004), 4, 439-444.
[12] Zemouche, A., Boutayeb, M., Bara, G. I.: Observers for a class of Lipschitz systems with extension to \(H_\infty\) performance analysis. Systems Control Lett. 57 (2008), 18-27. · Zbl 1129.93006 · doi:10.1016/j.sysconle.2007.06.012
[13] Wang, Y., Lynch, A. F.: Observer design using a generalized time-scaled block triangular observer form. Systems Control Lett. 58 (2009), 346-352. · Zbl 1159.93327 · doi:10.1016/j.sysconle.2008.12.005
[14] Xu, S., Lu, J., Zhou, S., Yang, C.: Design of observers for a class of discrete-time uncertain nonlinear systems with time delay. J. Franklin Inst. 341 (2004), 295-308. · Zbl 1073.93007 · doi:10.1016/j.jfranklin.2003.12.012
[15] Zemouche, A., Boutayeb, M.: Observer design for Lipschitz nonlinear systems: The discrete-time case. IEEE Trans. Circuits and Systems - II: Express Briefs 53 (2006), 8, 777-781.
[16] Zemouche, A., Boutayeb, M.: A new observer design method for a class of Lipschitz nonlinear discrete-time systems with time-delay extension to \(H_\infty\) performance analysis. Proc. 46th IEEE Conference on Decision and Control, New Orleans 2007, pp. 414-419. · Zbl 1223.93018 · doi:10.1016/j.amc.2011.05.081
[17] Zemouche, A., Boutayeb, M., Bara, G. I.: On observers design for nonlinear time-delay systems. Proc. American Control Conference, Minneapolis 2006, pp. 4025-4030.
[18] Zemouche, A., Boutayeb, M., Bara, G. I.: Observer design for a class of nonlinear time-delay systems. Proc. 2007 American Control Conference Marriott Marquis Hotel at Times Square, New York City 2007, pp. 1676-1681.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.