×

zbMATH — the first resource for mathematics

Finite-time tracking control of multiple nonholonomic mobile robots. (English) Zbl 1264.93158
Summary: This paper investigates finite-time tracking control problem of multiple nonholonomic wheeled mobile robots in dynamic model. First of all, the resulting tracking error dynamic is transformed into two subsystems, i.e., a third-order subsystem and a second-order subsystem for each mobile robot. Then, the two subsystems are discussed respectively, continuous distributed finite-time tracking control laws are designed for each mobile robot. Rigorous proof shows that the group of mobile robots can track the desired trajectory in finite time. Simulation example illustrates the effectiveness of our method.

MSC:
93C85 Automated systems (robots, etc.) in control theory
93C15 Control/observation systems governed by ordinary differential equations
93B17 Transformations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Liao, T.L.; Lin, S.H., Adaptive control and synchronization of Lorenz systems, Journal of the franklin institute, 366, 6, 925-937, (1999) · Zbl 1051.93514
[2] Hutu, F.; Caueta, S.; Coirault, P., Robust synchronization next term of different coupled oscillatorsapplication to antenna arrays, Journal of the franklin institute, 346, 5, 413-430, (2009) · Zbl 1167.93333
[3] Bauchau, O.A., Parallel computation approaches for flexible multibody dynamics simulations, Journal of the franklin institute, 347, 1, 53-68, (2010) · Zbl 1298.65200
[4] Chen, Y.; Lü, J.H.; Han, F.L.; Yu, X.H., On the cluster consensus of discrete-time multi-agent systems, Systems and control letters, 60, 7, 517-523, (2011) · Zbl 1222.93007
[5] Lin, P.; Qin, K.Y.; Zhao, H.M.; Sun, M., A new approach to average consensus problems with multiple time-delays and jointly-connected topologies, Journal of the franklin institute, 349, 1, 293-304, (2012) · Zbl 1254.93009
[6] Yang, H.Y.; Zhang, Z.X.; Zhang, S.Y., Consensus of second-order multi-agent systems with exogenous disturbances, International journal of robust and nonlinear control, 21, 9, 945-956, (2011) · Zbl 1215.93014
[7] Dong, W.J.; Farrell, J.A., Decentralized cooperative control of multiple nonholonomic dynamic systems with uncertainty, Automatica, 45, 3, 706-710, (2009) · Zbl 1166.93302
[8] Fax, J.A.; Murray, R.M., Information flow and cooperative control of vehicle formations, IEEE transactions on automatic control, 49, 9, 1465-1476, (2004) · Zbl 1365.90056
[9] Ghommama, J.; Mehrjerdi, H.; Mnif, F.; Saad, M., Cascade design for formation control of nonholonomic systems in chained form, Journal of the franklin institute, 348, 6, 973-998, (2011) · Zbl 1222.93154
[10] Ren, W.; Atkins, E., Distributed multi-vehicle coordinated control via local information exchange, International journal of robust and nonlinear control, 17, 10-11, 1002-1033, (2007) · Zbl 1266.93010
[11] Lin, J.; Morse, A.S.; Anderson, B.D.O., The multi-agent rendezvous problem. part 1the synchronous case, SIAM journal on control and optimization,, 46, 6, 2096-2119, (2007) · Zbl 1149.93023
[12] Lin, J.; Morse, A.S.; Anderson, B.D.O., The multi-agent rendezvous problem. part 2the asynchronous case, SIAM journal on control and optimization, 46, 6, 2120-2147, (2007) · Zbl 1149.93024
[13] Su, H.S.; Wang, X.F.; Chen, G.R., Rendezvous of multiple mobile agents with preserved network connectivity, Systems and control letters, 59, 5, 313-322, (2010) · Zbl 1191.93005
[14] Saber, R.O., Flocking for multi-agent dynamic systemsalgorithms and theory, IEEE transactions on automatic control, 51, 3, 410-420, (2006)
[15] Tanner, H.G.; Jadbabaie, A.; Pappas, G.J., Flocking in fixed and switching networks, IEEE transactions on automatic control, 52, 5, 863-868, (2007) · Zbl 1366.93414
[16] Su, H.S.; Wang, X.F.; Lin, Z.Q., Flocking of multi-agents with a virtual leader, IEEE transactions on automatic control, 54, 2, 293-307, (2009) · Zbl 1367.37059
[17] Jadbabaie, A.; Lin, J.; Morse, A.S., Coordination of groups of mobile autonomous agents using nearest neighbor rules, IEEE transactions on automatic control, 48, 6, 988-1001, (2003) · Zbl 1364.93514
[18] Ren, W.; Beard, R.W., Consensus seeking in multi-agent systems under dynamically changing interaction topologies, IEEE transactions on automatic control, 50, 5, 655-661, (2005) · Zbl 1365.93302
[19] Saber, R.O.; Murray, R.M., Consensus problems in networks of agents with switching topology and time-delays, IEEE transactions on automatic control, 49, 9, 1520-1533, (2004) · Zbl 1365.93301
[20] Desai, J.P.; Ostrowski, J.P.; Kumar, V., Modeling and control of formations of nonholonomic mobile robots, IEEE transactions on robotics and automation, 17, 6, 905-908, (2001)
[21] Justh, E.W.; Krishnaprasad, P.S., Equilibrium and steering laws for planar formations, System and control letters, 52, 1, 25-38, (2004) · Zbl 1157.93406
[22] Lin, Z.Y.; Francis, B.; Maggiore, M., Necessary and sufficient graphical conditions for formation control of unicycles, IEEE transactions on automatic control, 50, 1, 121-127, (2005) · Zbl 1365.93324
[23] Dong, W.J.; Farrell, J.A., Cooperative control of multiple nonholonomic mobile agents, IEEE transactions on automatic control, 53, 6, 1434-1448, (2008) · Zbl 1367.93226
[24] Dong, W.J., Robust formation control of multiple wheeled mobile robots, Journal of intelligent and robotic systems: theory and applications, 62, 3-4, 547-565, (2011) · Zbl 1245.93085
[25] Bhat, S.P.; Bernstein, D.S., Finite-time stability of continuous autonomous systems, SIAM journal on control and optimization, 38, 3, 751-766, (2000) · Zbl 0945.34039
[26] Bhat, S.P.; Bernstein, D.S., Geometric homogeneity with applications to finite-time stability, Mathematics of control, signals and systems, 17, 2, 101-127, (2005) · Zbl 1110.34033
[27] Li, S.H.; Du, H.B.; Lin, X.Z., Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics, Automatica, 47, 8, 1706-1712, (2011) · Zbl 1226.93014
[28] Du, H.B.; Li, S.H.; Qian, C.J., Finite-time attitude tracking control of spacecraft with application to attitude synchronization, IEEE transactions on automatic control, 56, 11, 2711-2717, (2011) · Zbl 1368.70036
[29] Cao, Y.C.; Ren, W.; Meng, Z.Y., Decentralized finite-time sliding mode estimators and their applications in decentralized finite-time formation tracking, Systems and control letters, 59, 9, 522-529, (2010) · Zbl 1207.93103
[30] Meng, Z.Y.; Ren, W.; You, Z., Distributed finite-time attitude containment control for multiple rigid bodies, Automatica, 46, 12, 2092-2099, (2010) · Zbl 1205.93010
[31] Khoo, S.Y.; Xie, L.H.; Man, Z.H., Robust finite-time consensus tracking algorithm for multirobot systems, IEEE/ASME transactions on mechatronics, 14, 2, 219-228, (2009)
[32] Jiang, Z.P.; Nijmeijer, H., Tracking control of mobile robotsa case study in backstepping, Automatica, 33, 7, 1393-1399, (1997) · Zbl 0882.93057
[33] Hong, Y.G.; Hu, J.P.; Gao, L.X., Tracking control for multi-agent consensus with an active leader and variable topology, Automatica, 4, 7, 1177-1182, (2006) · Zbl 1117.93300
[34] Hardy, G.H.; Littlewood, J.E.; Polya, G., Inequalities[M], (1952), Cambridge University Press Cambridge · Zbl 0047.05302
[35] Qian, C.J.; Lin, W., A continuous feedback approach to global strong stabilization of nonlinear systems, IEEE transactions on automatic control, 46, 7, 1061-1079, (2001) · Zbl 1012.93053
[36] S.P. Bhat, D.S. Bernstein, Finite-time stability of homogeneous systems, in: Proceedings of the American Control Conference, 1997, 2513-2514.
[37] Hong, Y.G.; Xu, Y.S.; Huang, J., Finite-time control for robot manipulators, Systems and control letters, 46, 4, 243-253, (2002) · Zbl 0994.93041
[38] Khalil, H.K., Nonlinear systems, (2002), Prentice-Hall Upper Saddle River, NJ · Zbl 0626.34052
[39] Dixon, W.; Dawson, D.M.; Zergeroglu, E.; Behal, A., Nonlinear control of wheeled mobile robots, lecture notes in control and information sciences, (2001,), Springer-Verlag London Ltd, 262
[40] Y. Kanayama, Y. Kimura, F. Miyazaki, T. Noguchi, A stable tracking control method for an autonomous mobile robot, in: Proceedings of the IEEE International Conference on Robotics and Automation 1990, 384-389.
[41] Wang, Z.; Li, S.H.; Fei, S.M., Finite-time tracking control of a nonholonomic mobile robot, Asian journal of control, 11, 3, 344-357, (2009)
[42] Li, S.H.; Ding, S.H.; Li, Q., Global set stabilisation of the spacecraft attitude using finite-time control technique, International journal of control, 82, 5, 822-836, (2009) · Zbl 1165.93328
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.