zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Estimation for stochastic nonlinear systems with randomly distributed time-varying delays and missing measurements. (English) Zbl 1264.93233
Summary: The estimation problem is investigated for a class of stochastic nonlinear systems with distributed time-varying delays and missing measurements. The considered distributed time-varying delays, stochastic nonlinearities, and missing measurements are modeled in random ways governed by Bernoulli stochastic variables. The discussed nonlinearities are expressed by the statistical means. By using the linear matrix inequality method, a sufficient condition is established to guarantee the mean-square stability of the estimation error, and then the estimator parameters are characterized by the solution to a set of LMIs. Finally, a simulation example is exploited to show the effectiveness of the proposed design procedures.
93E10Estimation and detection in stochastic control
93E11Filtering in stochastic control
Full Text: DOI
[1] M. F. Bugallo and S. Xu, “Performance comparison of EKF and particle filtering methods for maneuvering targets,” Digital Signal Processing, vol. 17, no. 4, pp. 774-786, 2007.
[2] C. Chen, H. Liu, and X. Guan, “H\infty filtering of time-delay T-S fuzzy systems based on piecewise Lyapunov-Krasovskii functional,” Signal Processing, vol. 89, no. 10, pp. 1998-2005, 2009. · Zbl 1178.93137 · doi:10.1016/j.sigpro.2009.04.002
[3] O. Costa, “Stationary filter for linear minimum means quare error estimator of discretetime markovian jump systems,” IEEE Transactions on Automatic Control, vol. 48, no. 8, pp. 1351-1356, 2002.
[4] H. Gao, J. Lam, L. Xie, and C. Wang, “New approach to mixed H2/H\infty filtering for polytopic discrete-time systems,” IEEE Transactions on Signal Processing, vol. 53, no. 8, pp. 3183-3192, 2005. · doi:10.1109/TSP.2005.851116
[5] H. Gao and C. Wang, “A delay-dependent approach to robust H\infty filtering for uncertain discrete-time state-delayed systems,” IEEE Transactions on Signal Processing, vol. 52, no. 6, pp. 1631-1640, 2004. · doi:10.1109/TSP.2004.827188
[6] H. Gao, J. Lam, C. Wang, and S. Xu, “Robust H\infty filtering for 2D stochastic systems,” Circuits, Systems, and Signal Processing, vol. 23, no. 6, pp. 479-505, 2004. · Zbl 1175.93222 · doi:10.1007/s00034-004-1121-0
[7] H. Gao, J. Lam, and C. Wang, “Robust energy-to-peak filter design for stochastic time-delay systems,” Systems & Control Letters, vol. 55, no. 2, pp. 101-111, 2006. · Zbl 1129.93538 · doi:10.1016/j.sysconle.2005.05.005
[8] W. Zhou, H. Su, and J. Chu, “Delay-dependent H1 filtering for singular Markovian jump time-delay systems,” Signal Processing, vol. 90, no. 6, pp. 1815-1824, 2010. · Zbl 1197.94144 · doi:10.1016/j.sigpro.2009.11.029
[9] A. Subramanian and A. H. Sayed, “Multiobjective filter design for uncertain stochastic time-delay systems,” IEE E Transactions on Automatic Control, vol. 49, no. 1, pp. 149-154, 2004. · doi:10.1109/TAC.2003.821422
[10] G. Wei, Z. Wang, and H. Shu, “Robust filtering with stochastic nonlinearities and multiple missing measurements,” Automatica, vol. 45, no. 3, pp. 836-841, 2009. · Zbl 1168.93407 · doi:10.1016/j.automatica.2008.10.028
[11] B. Shen, Z. Wang, H. Shu, and G. Wei, “On nonlinear H\infty filtering for discrete-time stochastic systems with missing measurements,” IEEE Transactions on Automatic Control, vol. 53, no. 9, pp. 2170-2180, 2008. · doi:10.1109/TAC.2008.930199
[12] G. Wei, Z. Wang, X. He, and H. Shu, “Filtering for networked stochastic time-delay systems with sector nonlinearity,” IEEE Transactions on Circuits and Systems-II, vol. 56, no. 1, pp. 71-75, 2009.
[13] Z. Wang, J. Lam, L. Ma, Y. Bo, and Z. Guo, “Variance-constrained dissipative observer-based control for a class of nonlinear stochastic systems with degraded measurements,” Journal of Mathematical Analysis and Applications, vol. 377, no. 2, pp. 645-658, 2011. · Zbl 1214.93104 · doi:10.1016/j.jmaa.2010.11.038
[14] Z. Wang, F. Yang, D. W. C. Ho, and X. Liu, “Robust H\infty filtering for stochstic time-delay systems with missing measurements,” IEEE Transactions on Signal Processing, vol. 54, no. 7, pp. 2579-2587, 2006.
[15] B. Shen, Z. Wang, and Y. S. Hung, “Distributed H\infty -consensus filtering in sensor networks with multiple missing measurements: the finite-horizon case,” Automatica, vol. 46, no. 10, pp. 1682-1688, 2010. · Zbl 1204.93122 · doi:10.1016/j.automatica.2010.06.025
[16] Q. Ling and M. D. Lemmon, “Optimal dropout compensation in networked control systems,” in Proceedings of the IEEE Conference on Decosion and Control, pp. 670-675, Honolulu, Hawaii, USA, 2003.
[17] B. Sinopoli, L. Schenato, M. Franceschetti, K. Poolla, M. I. Jordan, and S. S. Sastry, “Kalman filtering with intermittent observations,” IEEE Transactions on Automatic Control, vol. 49, no. 9, pp. 1453-1464, 2004. · doi:10.1109/TAC.2004.834121
[18] Y. Che, H. Shu, and Z. Wang, “Nonlinear systems filtering with missing measurements and randomly distributed delays,” Journal of Harbin University of Science and Technology, vol. 16, no. 6, pp. 36-41, 2011.
[19] Z. Wang, B. Shen, H. Shu, and G. Wei, “Quantized H-infinity control for nonlinear stochastic time-delay systems with missing measurements,” IEEE Transactions on Automatic Control, vol. 57, no. 6, pp. 1431-1444, 2012.
[20] Z. Wang, B. Shen, and X. Liu, “H\infty filtering with randomly occurring sensor saturations and missing measurements,” Automatica, vol. 48, no. 3, pp. 556-562, 2012. · Zbl 1244.93162 · doi:10.1016/j.automatica.2012.01.008
[21] B. Shen, Z. Wang, J. Liang, and Y. Liu, “Recent advances on filtering and control for nonlinear stochastic complex systems with incomplete information: a survey,” Mathematical Problems in Engineering, vol. 2012, Article ID 530759, 16 pages, 2012. · Zbl 1264.93248 · doi:10.1155/2012/530759
[22] H. Dong, Z. Wang, and H. Gao, “Distributed filtering for a class of time-varying systems over sensor networks with quantization errors and successive packet dropouts,” IEEE Transactions on Signal Processing, vol. 60, no. 6, pp. 3164-3173, 2012.
[23] V. Kapila and W. M. Haddad, “Memoryless H1 controllers for discrete-time systems with time delay,” Automatica, vol. 34, no. 8, pp. 1141-1144, 1998. · Zbl 0934.93023 · doi:10.1016/S0005-1098(98)00054-5
[24] J. H. Kim and H. B. Park, “H\infty state feedback control for generalized continuous/discrete time-delay system,” Automatica, vol. 35, no. 8, pp. 1443-1451, 1999. · Zbl 0954.93011 · doi:10.1016/S0005-1098(99)00038-2
[25] C. E. de Souza and X. Li, “Delay-dependent robust H\infty control of uncertain linear state-delayed systems,” Automatica, vol. 35, no. 7, pp. 1313-1321, 1999. · Zbl 1041.93515 · doi:10.1016/S0005-1098(99)00025-4
[26] E. Fridman and U. Shaked, “A descriptor system approach to H\infty control of linear time-delay systems,” IEEE Transactions on Automatic Control, vol. 47, no. 2, pp. 253-270, 2002. · doi:10.1109/9.983353
[27] E. Fridman and U. Shaked, “An improved stabilization method for linear time-delay systems,” IEEE Transactions on Automatic Control, vol. 47, no. 11, pp. 1931-1937, 2002. · doi:10.1109/TAC.2002.804462
[28] Y. S. Moon, P. Park, W. H. Kwon, and Y. S. Lee, “Delay-dependent robust stabilization of uncertain state-delayed systems,” International Journal of Control, vol. 74, no. 14, pp. 1447-1455, 2001. · Zbl 1023.93055 · doi:10.1080/00207170110067116
[29] Y. Zhang, S. Xu, Y. Zou, and J. Lu, “Delay-dependent robust stabilization for uncertain discrete-time fuzzy Markovian jump systems with mode-dependent time delays,” Fuzzy Sets and Systems, vol. 164, no. 1, pp. 66-81, 2011. · Zbl 1217.93156 · doi:10.1016/j.fss.2010.09.015
[30] Z.-W. Liu and H.-G. Zhang, “Delay-dependent stability for systems with fast-varying neutral-type delays via a PTVD compensation,” Acta Automatica Sinica, vol. 36, no. 1, pp. 147-152, 2010. · doi:10.3724/SP.J.1004.2010.00147
[31] D. Yue and H. Li, “Synchronization stability of continuous/discrete complex dynamical networks with interval time-varying delays,” Neurocomputing, vol. 73, pp. 4809-6819, 2010.
[32] Y. Liu, Z. Wang, and X. Liu, “Robust H\infty filtering for discrete nonlinear stochastic systems with time-varying delay,” Journal of Mathematical Analysis and Applications, vol. 341, no. 1, pp. 318-336, 2008. · Zbl 1245.93131 · doi:10.1016/j.jmaa.2007.10.019
[33] S. Xu, J. Lam, and C. Yang, “H\infty and positive-real control for linear neutral delay systems,” IEEE Transactions on Automatic Control, vol. 46, no. 8, pp. 1321-1326, 2001. · Zbl 1008.93033 · doi:10.1109/9.940943
[34] R. Rakkiyappan and P. Balasubramaniam, “Delay-probability-distribution-dependent stability of uncertain stochastic genetic regulatory networks with mixed time-varying delays: an LMI approach,” Nonlinear Analysis. Hybrid Systems, vol. 4, no. 3, pp. 600-607, 2010. · Zbl 1200.93119 · doi:10.1016/j.nahs.2010.03.007
[35] Y. Liu, Z. Wang, and X. Liu, “State estimation for discrete-time Markovian jumping neural networks with mixed mode-dependent delays,” Physics Letters A, vol. 372, no. 48, pp. 7147-7155, 2008. · Zbl 1227.92002 · doi:10.1016/j.physleta.2008.10.045
[36] H. Shu, Z. Wang, and Z. Lü, “Global asymptotic stability of uncertain stochastic bi-directional associative memory networks with discrete and distributed delays,” Mathematics and Computers in Simulation, vol. 80, no. 3, pp. 490-505, 2009. · Zbl 1195.34125 · doi:10.1016/j.matcom.2008.07.007
[37] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control via LMI optimization,” IEEE Transactions on Automatic Control, vol. 42, no. 7, pp. 896-911, 1997. · Zbl 0883.93024 · doi:10.1109/9.599969