×

Fault detection for industrial processes. (English) Zbl 1264.93241

Summary: A new fault-relevant KPCA algorithm is proposed. Then the fault detection approach is proposed based on the fault-relevant KPCA algorithm. The proposed method further decomposes both the KPCA principal space and residual space into two subspaces. Compared with traditional statistical techniques, the fault subspace is separated based on the fault-relevant influence. This method can find fault-relevant principal directions and principal components of systematic subspace and residual subspace for process monitoring. The proposed monitoring approach is applied to Tennessee Eastman process and penicillin fermentation process. The simulation results show the effectiveness of the proposed method.

MSC:

93E10 Estimation and detection in stochastic control theory
62P30 Applications of statistics in engineering and industry; control charts
62G08 Nonparametric regression and quantile regression
62H25 Factor analysis and principal components; correspondence analysis

Software:

KPCA plus LDA
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] H. Chun-Chin and S. Chao-Ton, “An adaptive forecast-based chart for non-Gaussian processes monitoring: with application to equipment malfunctions detection in a thermal power plant,” IEEE Transactions on Control Systems Technology, vol. 19, no. 5, pp. 1245-1250, 2010. · doi:10.1109/TCST.2010.2083664
[2] P. A. Samara, G. N. Fouskitakis, J. S. Sakallariou, and S. D. Fassois, “A statistical method for the detection of sensor abrupt faults in aircraft control systems,” IEEE Transactions on Control Systems Technology, vol. 16, no. 4, pp. 789-798, 2008. · doi:10.1109/TCST.2007.903109
[3] T. Chen and J. Zhang, “On-line multivariate statistical monitoring of batch processes using Gaussian mixture model,” Computers and Chemical Engineering, vol. 34, no. 4, pp. 500-507, 2010. · doi:10.1016/j.compchemeng.2009.08.007
[4] B. Zhang, C. Sconyers, C. Byington, R. Patrick, M. E. Orchard, and G. Vachtsevanos, “A probabilistic fault detection approach: application to bearing fault detection,” IEEE Transactions on Industrial Electronics, vol. 58, no. 5, pp. 2011-2018, 2011. · doi:10.1109/TIE.2010.2058072
[5] S. J. Qin, “Statistical process monitoring: basics and beyond,” Journal of Chemometrics, vol. 17, no. 8-9, pp. 480-502, 2003.
[6] Q. Chen and U. Kruger, “Analysis of extended partial least squares for monitoring large-scale processes,” IEEE Transactions on Control Systems Technology, vol. 13, no. 5, pp. 807-813, 2005. · doi:10.1109/TCST.2005.852113
[7] B. Ayhan, M. Y. Chow, and M. H. Song, “Multiple discriminant analysis and neural-network-based monolith and partition fault-detection schemes for broken rotor bar in induction motors,” IEEE Transactions on Industrial Electronics, vol. 53, no. 4, pp. 1298-1308, 2006. · doi:10.1109/TIE.2006.878301
[8] U. Kruger, S. Kumar, and T. Littler, “Improved principal component monitoring using the local approach,” Automatica. A Journal of IFAC, the International Federation of Automatic Control, vol. 43, no. 9, pp. 1532-1542, 2007. · Zbl 1126.62122 · doi:10.1016/j.automatica.2007.02.016
[9] C. F. Alcala and S. J. Qin, “Reconstruction-based contribution for process monitoring,” Automatica, vol. 45, no. 7, pp. 1593-1600, 2009. · Zbl 1188.90074 · doi:10.1016/j.automatica.2009.02.027
[10] R. Muradore and P. Fiorini, “A PLS-based statistical approach for fault detection and isolation of robotic manipulators,” IEEE Transactions on Industrial Electronics, vol. 59, no. 8, pp. 3167-3175, 2012. · doi:10.1109/TIE.2011.2167110
[11] G. Li, S. J. Qin, and D. Zhou, “Geometric properties of partial least squares for process monitoring,” Automatica. A Journal of IFAC, the International Federation of Automatic Control, vol. 46, no. 1, pp. 204-210, 2010. · Zbl 1233.62208 · doi:10.1016/j.automatica.2009.10.030
[12] G. Li, S. Joe Qin, and D. Zhou, “Output relevant fault reconstruction and fault subspace extraction in total projection to latent structures models,” Industrial and Engineering Chemistry Research, vol. 49, no. 19, pp. 9175-9183, 2010. · doi:10.1021/ie901939n
[13] J. M. Lee, C. K. Yoo, S. W. Choi, P. A. Vanrolleghem, and I. B. Lee, “Nonlinear process monitoring using kernel principal component analysis,” Chemical Engineering Science, vol. 59, no. 1, pp. 223-234, 2004. · doi:10.1016/j.ces.2003.09.012
[14] J. F. MacGregor and T. Kourti, “Statistical process control of multivariate processes,” Control Engineering Practice, vol. 3, no. 3, pp. 403-414, 1995.
[15] G. Lee, C. Han, and E. S. Yoon, “Multiple-fault diagnosis of the Tennessee Eastman process based on system decomposition and dynamic PLS,” Industrial and Engineering Chemistry Research, vol. 43, no. 25, pp. 8037-8048, 2004.
[16] J. M. Lee, C. Yoo, and I. B. Lee, “Statistical process monitoring with independent component analysis,” Journal of Process Control, vol. 14, no. 5, pp. 467-485, 2004. · doi:10.1016/j.jprocont.2003.09.004
[17] S. Wold, K. Esbensen, and P. Geladi, “Principal component analysis,” Chemometrics and Intelligent Laboratory Systems, vol. 2, no. 1-3, pp. 37-52, 1987.
[18] G. H. Dunteman, Principal Component Analysis, SAGE publication LTD, London, UK, 1989.
[19] J. E. Jackson, A User’s Guide to Principal Component, Wiley, New York, NY, USA, 1991. · Zbl 0743.62047
[20] D. G. Kleinbaum, L. L. Kupper, and K. E. Muller, Applied Regression Analysis and Other Multivariable Methods, Wdasworth Publishing Co Inc, California, Calif, USA, 2033. · Zbl 0424.62045
[21] A. J. Burnham, R. Viveros, and J. F. Macgregor, “Frameworks for latent variable multivariate regression,” Journal of Chemometrics, vol. 10, no. 1, pp. 31-45, 1996.
[22] B. S. Dayal and J. F. Macgregor, “Improved PLS algorithms,” Journal of Chemometrics, vol. 11, no. 1, pp. 73-85, 1997.
[23] S. J. Qin, “Recursive PLS algorithms for adaptive data modeling,” Computers and Chemical Engineering, vol. 22, no. 4-5, pp. 503-514, 1998.
[24] C. Zhao, F. Wang, and Y. Zhang, “Nonlinear process monitoring based on kernel dissimilarity analysis,” Control Engineering Practice, vol. 17, no. 1, pp. 221-230, 2009. · doi:10.1016/j.conengprac.2008.07.001
[25] Y. W. Zhang, H. Zhou, and S. J. Qin, “Decentralized fault diagnosis of large-scale processes using multiblock kernel principal component analysis,” Zidonghua Xuebao/ Acta Automatica Sinica, vol. 36, no. 4, pp. 593-597, 2010. · doi:10.3724/SP.J.1004.2010.00593
[26] Y. Zhang, H. Zhou, S. J. Qin, and T. Chai, “Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares,” IEEE Transactions on Industrial Informatics, vol. 6, no. 1, pp. 3-10, 2010. · doi:10.1109/TII.2009.2033181
[27] Y. Zhang and Z. Hu, “Multivariate process monitoring and analysis based on multi-scale KPLS,” Chemical Engineering Research and Design, vol. 89, no. 12, pp. 2667-2678, 2011. · doi:10.1016/j.cherd.2011.05.005
[28] H. D. Jin, Y. H. Lee, G. Lee, and C. Han, “Robust recursive principal component analysis modeling for adaptive monitoring,” Industrial and Engineering Chemistry Research, vol. 45, no. 2, pp. 696-703, 2006. · doi:10.1021/ie050850t
[29] Y. H. Lee, H. D. Jin, and C. Han, “On-line process state classification for adaptive monitoring,” Industrial and Engineering Chemistry Research, vol. 45, no. 9, pp. 3095-3107, 2006. · doi:10.1021/ie048969+
[30] J. Yang, A. F. Frangi, J. Y. Yang, D. Zhang, and Z. Jin, “KPCA plus LDA: a complete kernel fisher discriminant framework for feature extraction and recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 27, no. 2, pp. 230-244, 2005. · Zbl 05110640 · doi:10.1109/TPAMI.2005.33
[31] X. Wang, U. Kruger, G. W. Irwin, G. McCullough, and N. McDowell, “Nonlinear PCA with the local approach for diesel engine fault detection and diagnosis,” IEEE Transactions on Control Systems Technology, vol. 16, no. 1, pp. 122-129, 2008. · doi:10.1109/TCST.2007.899744
[32] D. Zhou, G. Lee, and S. J. Qin, “Total projection to latent structures for process monitoring,” AIChE Journal, vol. 56, pp. 168-178, 2010.
[33] G. Li, C. F. Alcala, S. J. Qin, and D. Zhou, “Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the tennessee Eastman process,” IEEE Transactions on Control Systems Technology, vol. 19, no. 5, pp. 1114-1127, 2010. · doi:10.1109/TCST.2010.2071415
[34] J. H. Cho, J. M. Lee, S. W. Choi, D. Lee, and I. B. Lee, “Fault identification for process monitoring using kernel principal component analysis,” Chemical Engineering Science, vol. 60, no. 1, pp. 279-288, 2005. · doi:10.1016/j.ces.2004.08.007
[35] S. W. Choi, C. Lee, J. M. Lee, J. H. Park, and I. B. Lee, “Fault detection and identification of nonlinear processes based on kernel PCA,” Chemometrics and Intelligent Laboratory Systems, vol. 75, no. 1, pp. 55-67, 2005. · doi:10.1016/j.chemolab.2004.05.001
[36] S. Valle, W. Li, and S. J. Qin, “Selection of the number of principal components: the variance of the reconstruction error criterion with a comparison to other methods,” Industrial and Engineering Chemistry Research, vol. 38, no. 11, pp. 4389-4401, 1999.
[37] S. Wold, “Cross-validatory estimation of the number of components in factor and principal component models,” Technometrics, vol. 4, pp. 397-405, 1978. · Zbl 0403.62032 · doi:10.2307/1267639
[38] C. A. Lowry and D. C. Montgomery, “Review of multivariate control charts,” IIE Transactions, vol. 27, no. 6, pp. 800-810, 1995.
[39] P. Nomikos and J. F. MacGregor, “Multivariate SPC charts for monitoring batch processes,” Technometrics, vol. 37, no. 1, pp. 41-59, 1995. · Zbl 0825.62740 · doi:10.2307/1269152
[40] J. J. Downs and E. F. Vogel, “A plant-wide industrial process control problem,” Computers and Chemical Engineering, vol. 17, no. 3, pp. 245-255, 1993.
[41] Y. Zhang and Y. Zhang, “Complex process monitoring using modified partial least squares method of independent component regression,” Chemometrics and Intelligent Laboratory Systems, vol. 98, no. 2, pp. 143-148, 2009. · doi:10.1016/j.chemolab.2009.06.001
[42] Y. Zhang, S. Li, and Y. Teng, “Dynamic processes monitoring using recursive kernel principal component analysis,” Chemical Engineering Science, vol. 72, pp. 78-86, 2012. · doi:10.1016/j.ces.2011.12.026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.