Fault detection of Markov jumping linear systems. (English) Zbl 1264.93246

Summary: The fault detection (FD) problems of discrete-time Markov jumping linear systems (MJLSs) are studied. We first focus on the stationary MJLS. The proposed FD system consists of two steps: residual generation and residual evaluation. A new reference model strategy is applied to construct a residual generator, such that it is robust against disturbances and sensitive to system faults. The generated residual signals are then evaluated according to their stochastic properties, and a threshold is computed for detecting the occurrences of faults. The upper bound of the corresponding false alarm rate (FAR) is also given. For the nonstationary MJLS, similar results are also obtained. All the solutions are presented in the form of linear matrix inequalities (LMIs). Finally, a numerical example is used to illustrate the results.


93E11 Filtering in stochastic control theory
94C12 Fault detection; testing in circuits and networks
93B36 \(H^\infty\)-control
62M02 Markov processes: hypothesis testing
93C55 Discrete-time control/observation systems
Full Text: DOI


[1] M. Blanke, M. Kinnaert, J. Lunze, and M. Staroswiecki, Diagnosis and Fault-Tolerant Control, Springer, 2003. · Zbl 1065.62055 · doi:10.1023/A:1025861910252
[2] S. X. Ding, Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools, Springer, 2008.
[3] R. Patton, P. M. Frank, and R. N. Clark, Eds., Issues of Fault Diagnosis for Dynamic Systems, Springer, 2002.
[4] P. M. Frank, S. X. Ding, and T. Marcu, “Model-based fault diagnosis in technical processes,” Transactions of the Institute of Measurement and Control, vol. 22, no. 1, pp. 57-101, 2000.
[5] P. Zhang and S. X. Ding, “On fault detection in linear discrete-time, periodic, and sampled-data systems,” Journal of Control Science and Engineering, vol. 2008, Article ID 849546, 19 pages, 2008. · doi:10.1155/2008/849546
[6] S. X. Ding, T. Jeinsch, P. M. Frank, and E. L. Ding, “Unified approach to the optimization of fault detection systems,” International Journal of Adaptive Control and Signal Processing, vol. 14, no. 7, pp. 725-745, 2000. · Zbl 0983.93016 · doi:10.1002/1099-1115(200011)14:7<725::AID-ACS618>3.0.CO;2-Q
[7] H. Gao, T. Chen, and L. Wang, “Robust fault detection with missing measurements,” International Journal of Control, vol. 81, no. 5, pp. 804-819, 2008. · Zbl 1152.93346 · doi:10.1080/00207170701684823
[8] M. Zhong, S. X. Ding, J. Lam, and H. Wang, “An LMI approach to design robust fault detection filter for uncertain LTI systems,” Automatica, vol. 39, no. 3, pp. 543-550, 2003. · Zbl 1036.93061 · doi:10.1016/S0005-1098(02)00269-8
[9] O. L. V. Costa and M. D. Fragoso, “Stability results for discrete-time linear systems with Markovian jumping parameters,” Journal of Mathematical Analysis and Applications, vol. 179, no. 1, pp. 154-178, 1993. · Zbl 0790.93108 · doi:10.1006/jmaa.1993.1341
[10] Y. Ji, H. J. Chizeck, X. Feng, and K. A. Loparo, “Stability and control of discrete-time jump linear systems,” Control Theory and Advanced Technology, vol. 7, no. 2, pp. 247-270, 1991.
[11] H. J. Chizeck, A. S. Willsky, and D. Castañon, “Discrete-time Markovian-jump linear quadratic optimal control,” International Journal of Control, vol. 43, no. 1, pp. 213-231, 1986. · Zbl 0591.93067 · doi:10.1080/00207178608933459
[12] Y. Ji and H. J. Chizeck, “Jump linear quadratic Gaussian control: steady-state solution and testable conditions,” Control Theory and Advanced Technology, vol. 6, no. 3, pp. 289-319, 1990.
[13] P. Seiler and R. Sengupta, “A bounded real lemma for jump systems,” Institute of Electrical and Electronics Engineers. Transactions on Automatic Control, vol. 48, no. 9, pp. 1651-1654, 2003. · Zbl 1364.93223 · doi:10.1109/TAC.2003.817010
[14] O. L. V. Costa and J. B. R. do Val, “Full information H\infty -control for discrete-time infinite Markov jump parameter systems,” Journal of Mathematical Analysis and Applications, vol. 202, no. 2, pp. 578-603, 1996. · Zbl 0862.93025 · doi:10.1006/jmaa.1996.0335
[15] M. D. Fragoso, J. B. Ribeiro do Val, and D. L. Pinto, Jr., “Jump linear H\infty control: the discrete-time case,” Control Theory and Advanced Technology, vol. 10, no. 4, part 3, pp. 1459-1474, 1995.
[16] O. L. V. Costa and S. Guerra, “Robust linear filtering for discrete-time hybrid Markov linear systems,” International Journal of Control, vol. 75, no. 10, pp. 712-727, 2002. · Zbl 1018.93028 · doi:10.1080/00207170210139502
[17] C. E. de Souza and M. D. Fragoso, “H\infty filtering for Markovian jump linear systems,” International Journal of Systems Science, vol. 33, no. 11, pp. 909-915, 2002. · Zbl 1045.93045 · doi:10.1080/0020772021000017281
[18] Z. Jin, V. Gupta, and R. M. Murray, “State estimation over packet dropping networks using multiple description coding,” Automatica, vol. 42, no. 9, pp. 1441-1452, 2006. · Zbl 1128.93051 · doi:10.1016/j.automatica.2006.03.020
[19] J. Wu and T. Chen, “Design of networked control systems with packet dropouts,” Institute of Electrical and Electronics Engineers. Transactions on Automatic Control, vol. 52, no. 7, pp. 1314-1319, 2007. · Zbl 1366.93215 · doi:10.1109/TAC.2007.900839
[20] J. Xiong and J. Lam, “Stabilization of linear systems over networks with bounded packet loss,” Automatica, vol. 43, no. 1, pp. 80-87, 2007. · Zbl 1140.93383 · doi:10.1016/j.automatica.2006.07.017
[21] P. Zhang, S. X. Ding, P. M. Frank, and M. Sader, “Fault detection of networked control systems with missing measurements,” in Proceedings of the 5th Asian Control Conference, pp. 1258-1263, Melbourne, Australia, July 2004.
[22] W. Li, P. Zhang, S. X. Ding, C. Chihaia, and O. Bredtmann, “Fault detection over wireless channels,” in Proceedings of the 47th IEEE Conference on Decision and Control, New Orleans, La, USA, 2007. · Zbl 1128.93051 · doi:10.1016/j.automatica.2006.03.020
[23] M. Zhong, H. Ye, P. Shi, and G. Wang, “Fault detection for Markovian jump systems,” IEE Proceedings: Control Theory and Applications, vol. 152, no. 4, pp. 397-402, 2005. · doi:10.1049/ip-cta:20045085
[24] W. Li, Z. Zhu, and S. X. Ding, “Fault detection design of networked control systems,” IET Control Theory & Applications, vol. 5, no. 12, pp. 1493-1449, 2011. · doi:10.1049/iet-cta.2010.0343
[25] C. Scherer, P. Gahinet, and M. Chilali, “Multiobjective output-feedback control via LMI optimization,” Institute of Electrical and Electronics Engineers. Transactions on Automatic Control, vol. 42, no. 7, pp. 896-911, 1997. · Zbl 0883.93024 · doi:10.1109/9.599969
[26] A. Papoulis, Probability, Random Variables, and Stochastic Processes, McGraw-Hill, New York, NY, USA, 1965. · Zbl 0191.46704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.