×

Construction of affine invariant functions in spatial domain. (English) Zbl 1264.94031

Summary: Affine invariant functions are constructed in spatial domain. Unlike the previous affine representation functions in transform domain, these functions are constructed directly on the object contour without any transformation. To eliminate the effect of the choice of points on the contour, an affine invariant function using seven points on the contour is constructed. For objects with several separable components, a closed curve is derived to construct the affine invariant functions. Several experiments have been conducted to evaluate the performance of the proposed method. Experimental results show that the constructed affine invariant functions can be used for object classification.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
68T45 Machine vision and scene understanding
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] M. I. Khalil and M. M. Bayoumi, “A dyadic wavelet affine invariant function for 2D shape recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 10, pp. 1152-1164, 2001. · doi:10.1109/34.954605
[2] M. K. Hu, “Visual pattern recognition by moment invariants,” IRE Transactions on Information Theory, vol. 8, no. 2, pp. 179-187, 1962. · Zbl 0102.13304
[3] J. Flusser and T. Suk, “Pattern recognition by affine moment invariants,” Pattern Recognition, vol. 26, no. 1, pp. 167-174, 1993. · doi:10.1016/0031-3203(93)90098-H
[4] T. Suk and J. Flusser, “Affine moment invariants generated by graph method,” Pattern Recognition, vol. 44, no. 9, pp. 2047-2056, 2011. · doi:10.1016/j.patcog.2010.05.015
[5] M. R. Daliri and V. Torre, “Robust symbolic representation for shape recognition and retrieval,” Pattern Recognition, vol. 41, no. 5, pp. 1799-1815, 2008. · Zbl 1140.68459 · doi:10.1016/j.patcog.2007.10.020
[6] P. L. E. Ekombo, N. Ennahnahi, M. Oumsis, and M. Meknassi, “Application of affine invariant fourier descriptor to shape based image retrieval,” International Journal of Computer Science and Network Security, vol. 9, no. 7, pp. 240-247, 2009.
[7] X. B. Gao, C. Deng, X. Li, and D. Tao, “Geometric distortion insensitive image watermarking in affine covariant regions,” IEEE Transactions on Systems, Man and Cybernetics C, vol. 40, no. 3, Article ID 5378648, pp. 278-286, 2010. · doi:10.1109/TSMCC.2009.2037512
[8] M. I. Khalil and M. M. Bayoumi, “Affine invariants for object recognition using the wavelet transform,” Pattern Recognition Letters, vol. 23, no. 1-3, pp. 57-72, 2002. · Zbl 0996.68166 · doi:10.1016/S0167-8655(01)00102-7
[9] G. Liu, Z. Lin, and Y. Yu, “Radon representation-based feature descriptor for texture classification,” IEEE Transactions on Image Processing, vol. 18, no. 5, pp. 921-928, 2009. · Zbl 1371.94239 · doi:10.1109/TIP.2009.2013072
[10] R. Matungka, Y. F. Zheng, and R. L. Ewing, “Image registration using adaptive polar transform,” IEEE Transactions on Image Processing, vol. 18, no. 10, pp. 2340-2354, 2009. · Zbl 1371.94258 · doi:10.1109/TIP.2009.2025010
[11] Y. Wang and E. K. Teoh, “2D affine-invariant contour matching using B-Spline model,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 29, no. 10, pp. 1853-1858, 2007. · doi:10.1109/TPAMI.2007.1135
[12] D. Zhang and G. Lu, “Review of shape representation and description techniques,” Pattern Recognition, vol. 37, no. 1, pp. 1-19, 2004. · doi:10.1016/j.patcog.2003.07.008
[13] E. Rahtu, A multiscale framework for affine invariant pattern recognition and registration, Ph.D. thesis, University of OULU, Oulu, Finland, 2007.
[14] R. Veltkamp and M. Hagedoorn, “State-of the art in shape matching,” Tech. Rep. UU-CS-1999, 1999.
[15] I. Weiss, “Geometric invariants and object recognition,” International Journal of Computer Vision, vol. 10, no. 3, pp. 207-231, 1993. · doi:10.1007/BF01539536
[16] K. Arbter, W. E. Snyder, H. Burkhardt, and G. Hirzinger, “Application of affine-invariant Fourier descriptors to recognition of 3-D objects,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 12, no. 7, pp. 640-647, 1990. · doi:10.1109/34.56206
[17] W. S. Lin and C. H. Fang, “Synthesized affine invariant function for 2D shape recognition,” Pattern Recognition, vol. 40, no. 7, pp. 1921-1928, 2007. · Zbl 1111.68641 · doi:10.1016/j.patcog.2006.03.021
[18] I. El Rube, M. Ahmed, and M. Kamel, “Wavelet approximation-based affine invariant shape representation functions,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 2, pp. 323-327, 2006. · doi:10.1109/TPAMI.2006.43
[19] Q. M. Tieng and W. W. Boles, “Wavelet-based affine invariant representation: a tool for recognizing planar objects in 3D space,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 8, pp. 846-857, 1997.
[20] G. Tzimiropoulos, N. Mitianoudis, and T. Stathaki, “Robust recognition of planar shapes under affine transforms using principal component analysis,” IEEE Signal Processing Letters, vol. 14, no. 10, pp. 723-726, 2007. · doi:10.1109/LSP.2007.896434
[21] R. Alferez and Y. F. Wang, “Geometric and illumination invariants for object recognition,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 6, pp. 505-536, 1999. · doi:10.1109/34.771318
[22] D. Cyganski and R. F. Vaz, “A linear signal decomposition approach to affine invariant contour identification,” SPIE: Intelligent Robots and Computer Vision X, vol. 1607, pp. 98-109, 1991.
[23] M. Yang, K. Kpalma, and J. Ronsin, “Affine invariance contour desciptor based on the equal area normalization,” IAENG International Journal of Applied Mathematics, vol. 36, no. 2, 2007. · Zbl 1227.94012
[24] Y. W. Chen and C. L. Xu, “Rolling penetrate descriptor for shape-based image retrieval and object recognition,” Pattern Recognition Letters, vol. 30, no. 9, pp. 799-804, 2009. · doi:10.1016/j.patrec.2008.04.015
[25] M. Li, C. Cattani, and S. Y. Chen, “Viewing sea level by a one-dimensional random function with long memory,” Mathematical Problems in Engineering, vol. 2011, Article ID 654284, 13 pages, 2011. · doi:10.1155/2011/654284
[26] M. Li and W. Zhao, “Visiting power laws in cyber-physical networking systems,” Mathematical Problems in Engineering, vol. 2012, Article ID 302786, 13 pages, 2012. · doi:10.1155/2012/302786
[27] W. S. Chen, P. C. Yuen, and X. Xie, “Kernel machine-based rank-lifting regularized discriminant analysis method for face recognition,” Neurocomputing, vol. 74, no. 17, pp. 2953-2960, 2011. · doi:10.1016/j.neucom.2011.04.019
[28] Y. Y. Tang, Y. Tao, and E. C. M. Lam, “New method for feature extraction based on fractal behavior,” Pattern Recognition, vol. 35, no. 5, pp. 1071-1081, 2002. · Zbl 0997.68117 · doi:10.1016/S0031-3203(01)00095-4
[29] J. Yang, Z. Chen, W. S. Chen, and Y. Chen, “Robust affine invariant descriptors,” Mathematical Problems in Engineering, vol. 2011, Article ID 185303, 15 pages, 2011. · Zbl 1213.68555 · doi:10.1155/2011/185303
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.