×

Establishing the minimal index in a parametric family of bicyclic biquadratic fields. (English) Zbl 1265.11061

Summary: Let \(c \geq 3\) be a positive integer such that \(c, 4c+1, c-1\) are square-free integers relatively prime in pairs. In this paper we find the minimal index and determine all elements with minimal index in the bicyclic biquadratic field \(K = {\mathbb Q} \left( \sqrt{\left( 4c+1 \right) c}, \sqrt{\left( c-1 \right) c} \right)\).

MSC:

11D57 Multiplicative and norm form equations
11A55 Continued fractions
11B37 Recurrences
11J68 Approximation to algebraic numbers
11J86 Linear forms in logarithms; Baker’s method
11Y50 Computer solution of Diophantine equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] W. S. Anglin, Simultaneous Pell equations, Math. Comp., 65 (1996), 355–359. · Zbl 0848.11007
[2] A. Baker and H. Davenport, The equations 3x 2 2 = y 2 and 8x 2 7 = z 2, Quart. J. Math. Oxford Ser. (2), 20 (1969), 129–137. · Zbl 0177.06802
[3] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. Reine Angew. Math., 442 (1993), 19–62. · Zbl 0788.11026
[4] M. A. Bennett, On the number of solutions of simultaneous Pell equations, J. Reine Angew. Math., 498 (1998), 173–199. · Zbl 1044.11011
[5] A. Dujella, Continued fractions and RSA with small secret exponent, Tatra Mt. Math. Publ., 29 (2004), 101–112. · Zbl 1114.11008
[6] A. Dujella and B. Ibrahimpašić, On Worley’s theorem in Diophantine approximations, Ann. Math. Inform., 35 (2008), 61–73. · Zbl 1279.11008
[7] A. Dujella and B. Jadrijević, A parametric family of quartic Thue equations, Acta Arith., 101 (2002), 159–170. · Zbl 0987.11017
[8] A. Dujella and B. Jadrijević, A family of quartic Thue inequalities, Acta Arith., 111 (2004), 61–76. · Zbl 1050.11036
[9] A. Dujella and A. Petho, Generalization of a theorem of Baker and Davenport, Quart. J. Math. Oxford Ser. (2), 49 (1998), 291–306. · Zbl 0911.11018
[10] P. Erdos, Arithmetical properties of polynomials, J. London Math. Soc., 28 (1953), 416–425. · Zbl 0051.27703
[11] I. Gaál, Diophantine Equations and Power Integral Bases, New Computational Methods, Birkhäuser, Boston, 2002. · Zbl 1016.11059
[12] I. Gaál, A. Petho and M. Pohst, On the resolution of index form equations in biquadratic number fields I, J. Number Theory, 38 (1991), 18–34. · Zbl 0726.11022
[13] I. Gaál, A. Pethoz and M. Pohst, On the resolution of index form equations in biquadratic number fields II, J. Number Theory, 38 (1991), 35–51. · Zbl 0726.11023
[14] I. Gaál, A. Petho and M. Pohst, On the indices of biquadratic number fields having Galois group V 4, Arch. Math. (Basel), 57 (1991), 357–361. · Zbl 0724.11049
[15] I. Gaál, A. Petho and M. Pohst, On the resolution of index form equation quartic number fields, J. Symbolic Comput., 16 (1993), 563–584. · Zbl 0808.11023
[16] I. Gaál, A. Petho and M. Pohst, On the resolution of index form equations in biquadratic number fields III, The bicyclic biquadratic case, J. Number Theory, 53 (1995), 100–114. · Zbl 0853.11026
[17] M. N. Gras and F. Tanoe, Corps biquadratic monogenes, Manuscripta Math., 86 (1995), 63–79. · Zbl 0816.11058
[18] D. W. Masser and J. H. Rickert, Simultaneous Pell equations, J. Number Theory, 61 (1996), 52–66. · Zbl 0882.11016
[19] T. Nagell, Introduction to Number Theory, Almqvist & Wiksell, Stockholm; John Wiley & Sons, New York, 1951. · Zbl 0042.26702
[20] T. Nakahara, On the indices and integral basis of non-cyclic but abelian of biquadratic fields, Arch. Math. (Basel), 41 (1983), 504–508. · Zbl 0513.12005
[21] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the Theory of Numbers, John Wiley, New York, 1991. · Zbl 0742.11001
[22] K. S. Williams, Integers of biquadratics fields, Canad. Math. Bull., 13 (1970), 519–526. · Zbl 0205.35401
[23] R. T. Worley, Estimating |{\(\alpha\)} p/q|, J. Austral. Math. Soc. Ser. A, 31 (1981), 202–206.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.