×

zbMATH — the first resource for mathematics

Aggregation operators and fuzzy measures on hypographs. (English) Zbl 1265.28043
Summary: In a fuzzy measure space we study aggregation operators by means of the hypographs of the measurable functions. We extend the fuzzy measures associated to these operators to more general fuzzy measures and we study their properties.
MSC:
28E10 Fuzzy measure theory
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Benvenuti P., Vivona D.: Comonotone aggregation operators. Rend. Mat. 20 (2000), 323-336 · Zbl 0999.28011
[2] Benvenuti P., Vivona, D., Divari M.: Characterization of comonotone aggregation operators. Proc. EUSFLAT, Palma de Mallorca 1999, pp. 367-370
[3] Benvenuti P., Vivona, D., Divari M.: General integral and fuzzy measures on subgraphs. VIII. IPMU, Madrid 2000, vol. II, pp. 1173-1176 · Zbl 0993.28009
[4] Benvenuti P., Vivona, D., Divari M.: Aggregation operators and associated fuzzy measures. V. International FSTA Conference, Liptovský Mikuláš 2000, pp. 40-44 · Zbl 1113.68507
[5] Benvenuti P., Vivona, D., Divari M.: Aggregation operators and associated fuzzy measures. Internat. J. Uncertainty, Fuzziness and Knowledge-Based System IX,2 (2001), 197-204 · Zbl 1113.68507
[6] Birkhoff G.: Lattice Theory. Amer. Math. Soc., Providence, RI 1967 · Zbl 0537.06001
[7] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: A Review on Aggregation Operators. University of Alcalá, Alcalá de Henares, Madrid 2001
[8] Imaoka H.: On a subjective evaluation model by a generalized fuzzy integral. Internat. J. Uncertainty, Fuzziness and Knowledge-Based Systems 5 (1997), 517-529 · Zbl 1232.68132
[9] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 · Zbl 1087.20041
[10] Klement E. P., Mesiar, R., Pap E.: A geometric approach to aggregation. Proc. EUSFLAT 2001, Leicester 2001, pp. 466-469
[11] Mesiar R., Komorníková M.: Aggregation operators. Proc. Prim. 36, XI Conference on Applied Mathematics, Novi Sad 1997, pp. 173-211 · Zbl 0960.03045
[12] Mostert P. S., Shields A. L.: On the structure of semigroups on a compact manifold with boundary. Ann. Math. 65 (1957), 117-143 · Zbl 0096.01203
[13] Vivona D.: Mathematical aspects of the theory of measures of fuzziness. Mathware and Math. Soft Comp. 3 (1996), 211-224 · Zbl 0859.04007
[14] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York 1992 · Zbl 0812.28010
[15] Yager R. R.: Aggregation operators and fuzzy systems modeling. Fuzzy Sets and Systems 67 (1994), 129-146 · Zbl 0845.93047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.