Miranville, Alain On a phase-field model with a logarithmic nonlinearity. (English) Zbl 1265.35139 Appl. Math., Praha 57, No. 3, 215-229 (2012). The paper deals with a phase-field system based on the Maxwell-Cattaneo heat conduction law which couples a semilinear parabolic equation for the order parameter \(u\) and a hyperbolic equation for the relative temperature. In the introductory chapter the author gives a detailed overview on the physical background and existing literature for this system. The aim of the paper is to prove existence of a solution to the system where the often used regular double-well potential is replaced by a singular logarithmic nonlinearity for the order parameter. To this end the author derives a priori estimates which separate the solution from the singularity. This works in one and two space dimensions. Owing to the separation property existence of a solution then follows from results on regular problems. Some remarks on more general nonlinearities, three space dimensions, uniqueness, and a quasistatic model conclude the paper. Reviewer: Volker Pluschke (Halle) Cited in 7 Documents MSC: 35K55 Nonlinear parabolic equations 35J60 Nonlinear elliptic equations 80A22 Stefan problems, phase changes, etc. Keywords:phase field system; Maxwell-Cattaneo law; well-posedness; logarithmic potential PDF BibTeX XML Cite \textit{A. Miranville}, Appl. Math., Praha 57, No. 3, 215--229 (2012; Zbl 1265.35139) Full Text: DOI Link OpenURL References: [1] S. Aizicovici, E. Feireisl, F. Issard-Roch: Long-time convergence of solutions to a phase-field system. Math. Methods Appl. Sci. 24 (2001), 277–287. · Zbl 0984.35026 [2] D. Brochet, D. Hilhorst, X. Chen: Finite dimensional exponential attractors for the phase-field model. Appl. Anal. 49 (1993), 197–212. · Zbl 0790.35052 [3] M. Brokate, J. Sprekels: Hysteresis and Phase Transitions. Springer, New York, 1996. · Zbl 0951.74002 [4] G. Caginalp: An analysis of a phase field model of a free boundary. Arch. Ration. Mech. Anal. 92 (1986), 205–245. · Zbl 0608.35080 [5] J.W. Cahn, J. E. Hilliard: Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 2 (1958), 258–267. [6] L. Cherfils, S. Gatti, A. Miranville: Existence of global solutions to the Caginalp phase-field system with dynamic boundary conditions and singular potentials. J. Math. Anal. Appl. 343 (2008), 557–566; Corrigendum, J. Math. Anal. Appl. 348 (2008), 1029–1030. · Zbl 1143.35070 [7] L. Cherfils, A. Miranville: Some results on the asymptotic behavior of the Caginalp system with singular potentials. Adv. Math. Sci. Appl. 17 (2007), 107–129. · Zbl 1145.35042 [8] L. Cherfils, A. Miranville: On the Caginalp system with dynamic boundary conditions and singular potentials. Appl. Math. 54 (2009), 89–115. · Zbl 1212.35012 [9] R. Chill, E. Fašangovà, J. Prüss: Convergence to steady states of solutions of the Cahn-Hilliard and Caginalp equation with dynamic boundary conditions. Math. Nachr. 279 (2006), 1448–1462. · Zbl 1107.35058 [10] C. I. Christov, P.M. Jordan: Heat conduction paradox involving second-sound propagation in moving media. Phys. Rev. Lett. 94 (2005), 154301. [11] C.M. Elliott, S. Zheng: Global existence and stability of solutions to the phase field equations. In: Free boundary value problems (Proc. Conf. Oberwolfach, 1989). Int. Ser. Numer. Math. 95 (1990), 46–58. [12] H. Gajewski, K. Zacharias: Global behaviour of a reaction-diffusion system modelling chemotaxis. Math. Nachr. 195 (1998), 77–114. · Zbl 0918.35064 [13] C.G. Gal, M. Grasselli: The non-isothermal Allen-Cahn equation with dynamic boundary conditions. Discrete Contin. Dyn. Syst. 22 (2008), 1009–1040. · Zbl 1160.35353 [14] S. Gatti, A. Miranville: Asymptotic behavior of a phase-field system with dynamic boundary conditions. In: Differential Equations. Inverse and Direct Problems. Proc. Workshop ”Evolution Equations: Inverse and Direct Problems”, Cortona, June 21–25, 2004. A series of Lecture Notes in Pure and Applied Mathematics, Vol. 251 (A. Favini, A. Lorenzi, eds.). CRC Press, Boca Raton, 2006, pp. 149–170. · Zbl 1123.35310 [15] M. Grasselli, A. Miranville, V. Pata, S. Zelik: Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials. Math. Nachr. 280 (2007), 1475–1509. · Zbl 1133.35017 [16] M. Grasselli, A. Miranville, G. Schimperna: The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials. Discr. Contin. Dyn. Syst. 28 (2010), 67–98. · Zbl 1194.35074 [17] M. Grasselli, H. Petzeltová, G. Schimperna: Long time behavior of solutions to the Caginalp system with singular potential. Z. Anal. Anwend. 25 (2006), 51–72. · Zbl 1128.35021 [18] M. Grasselli, V. Pata: Existence of a universal attractor for a fully hyperbolic phase-field system. J. Evol. Equ. 4 (2004), 27–51. · Zbl 1063.35038 [19] A.E. Green, P.M. Naghdi: A re-examination of the basic postulates of thermomechanics. Proc. R. Soc. Lond. A 432 (1991), 171–194. · Zbl 0726.73004 [20] J. Jiang: Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law. J. Math. Anal. Appl. 341 (2008), 149–169. · Zbl 1139.35019 [21] J. Jiang: Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law. Math. Methods Appl. Sci. 32 (2009), 1156–1182. · Zbl 1180.35107 [22] A. Kufner, O. John, S. Fučík: Function Spaces. Noordhoff International Publishing/Academia, Leyden/Prague, 1977. [23] A. Miranville, R. Quintanilla: A generalization of the Caginalp phase-field system based on the Cattaneo law. Nonlinear Anal., Theorey Methods Appl. 71 (2009), 2278–2290. · Zbl 1167.35304 [24] A. Miranville, R. Quintanilla: Some generalizations of the Caginalp phase-field system. Appl. Anal. 88 (2009), 877–894. · Zbl 1178.35194 [25] A. Miranville, R. Quintanilla: A phase-field model based on a three-phase-lag heat conduction. Appl. Math. Optim. 63 (2011), 133–150. · Zbl 1213.35111 [26] A. Miranville, R. Quintanilla: A type III phase-field system with a logarithmic potential. Appl. Math. Lett. 24 (2011), 1003–1008. · Zbl 1213.35187 [27] A. Miranville, S. Zelik: Robust exponential attractors for singularly perturbed phase-field type equations. Electron. J. Differ. Equ. (2002), 1–28. Paper No. 63, electronic only. · Zbl 1004.35024 [28] A. Miranville, S. Zelik: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27 (2004), 545–582. · Zbl 1050.35113 [29] A. Miranville, S. Zelik: The Cahn-Hilliard equation with singular potentials and dynamic boundary conditions. Discr. Contin. Dyn. Syst. 28 (2010), 275–310. · Zbl 1203.35046 [30] S.K. Roy Choudhuri: A thermoelastic three-phase-lag model. J. Thermal Stresses 30 (2007), 231–238. [31] Z. Zhang: Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions. Commun. Pure Appl. Anal. 4 (2005), 683–693. · Zbl 1082.35033 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.