Hadžić, Olga; Pap, Endre; Budinčević, Mirko Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces. (English) Zbl 1265.54127 Kybernetika 38, No. 3, 363-381 (2002). Summary: In this paper a fixed point theorem for a probabilistic \(q\)-contraction \(f\:S\to S,\) where \((S, \mathcal {F},T)\) is a complete Menger space, \(\mathcal {F}\) satisfies a grow condition, and \(T\) is a \(g\)-convergent t-norm (not necessarily \(T \geq T_L\)) is proved. Also a second fixed point theorem is proved for mappings \(f\:S \rightarrow S\), where \((S, \mathcal {F},T)\) is a complete Menger space, \(\mathcal {F}\) satisfies a weaker condition than in [V. Radu, Lectures on probabilistic analysis. Surveys, in: Lecture Notes and Monographs. Series on Probability, Statistics and Applied Mathematics. 2. Timişoara: Universitatea de Vest din Timişoara, Facultatea de Matematicã, 110 p. (1994; Zbl 0927.60003)], and \(T\) belongs to some subclasses of Dombi, Aczél-Alsina, and Sugeno-Weber families of t-norms. An application to random operator equations is obtained. Cited in 31 Documents MSC: 54E70 Probabilistic metric spaces 54H25 Fixed-point and coincidence theorems (topological aspects) Keywords:probabilistic metric space; triangular norm; Menger space; fixed point theorem Citations:Zbl 0927.60003 PDF BibTeX XML Cite \textit{O. Hadžić} et al., Kybernetika 38, No. 3, 363--381 (2002; Zbl 1265.54127) Full Text: Link References: [1] J. Aczel: Lectures on Functional Equations and their Applications. Academic Press, New York 1969. · Zbl 0194.30003 [2] O. Hadžič, E. Pap: On some classes of t-norms important in the fixed point theory. Bull. Acad. Serbe Sci. Art. Sci. Math. 25 (2000), 15-28. [3] O. Hadžič, E. Pap: A fixed point theorem for multivalued mappings in probabilistic metric spaces and an application in fuzzy metric spaces. Fuzzy Sets and Systems 127 (2002), 333-344. · Zbl 1002.54025 [4] O. Hadžič, E. Pap: Fixed Point Theory in Probabilistic Metric Spaces. Kluwer Academic Publishers, Dordrecht 2001. [5] T. L. Hicks: Fixed point theory in probabilistic metric spaces. Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 13 (1983), 63-72. · Zbl 0574.54044 [6] O. Kaleva, S. Seikalla: On fuzzy metric spaces. Fuzzy Sets and Systems 12 (1984), 215-229. · Zbl 0558.54003 [7] E. P. Klement R. Mesiar, and E. Pap: Triangular Norms. (Trends in Logic 8.) Kluwer Academic Publishers, Dordrecht 2000. [8] E. P. Klement R. Mesiar, and E. Pap: Uniform approximation of associative copulas by strict and non-strict copulas. Illinois J. Math. J. 5 (2001), 4, 1393-1400. · Zbl 1054.62064 [9] K. Menger: Statistical metric. Proc Nat. Acad. Sci. U.S.A. 28 (1942), 535-537. · Zbl 0063.03886 [10] R. Mesiar, H. Thiele: On \(T\)-quantifiers and \(S\)-quantifiers: Discovering the World with Fuzzy Logic. (V. Novak and I. Perfilieva, Studies in Fuzziness and Soft Computing vol. 57), Physica-Verlag, Heidelberg 2000, pp. 310-326. · Zbl 1005.03030 [11] E. Pap: Null-Additive Set Functions. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava 1995. · Zbl 0968.28010 [12] E. Pap O. Hadžič, and R. Mesiar: A fixed point theorem in probabilistic metric spaces and applications in fuzzy set theory. J. Math. Anal. Appl. 202 (1996), 433-449. · Zbl 0855.54043 [13] V. Radu: Lectures on probabilistic analysis. Surveys. (Lectures Notes and Monographs Series on Probability, Statistics & Applied Mathematics 2), Universitatea de Vest din Timisoara 1994. [14] B. Schweizer, A. Sklar: Probabilistic Metric Spaces. Elsevier North-Holland, New York 1983. · Zbl 0546.60010 [15] V. M. Sehgal, A. T. Bharucha-Reid: Fixed points of contraction mappings on probabilistic metric spaces. Math. Systems Theory 6 (1972), 97-102. · Zbl 0244.60004 [16] R. M. Tardiff: Contraction maps on probabilistic metric spaces. J. Math. Anal. Appl. 165 (1992), 517-523. · Zbl 0773.54033 [17] S. Weber: \(\bot\)-decomposable measures and integrals for Archimedean t-conorm \(\bot\). J. Math. Anal. Appl. 101 (1984), 114-138. · Zbl 0614.28019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.