×

zbMATH — the first resource for mathematics

Observability and observers for nonlinear systems with time delays. (English) Zbl 1265.93060
Summary: Basic properties on linearization by output injection are investigated in this paper. A special structure is sought which is linear up to a suitable output injection and under a suitable change of coordinates. It is shown how an observer may be designed using theory available for linear time delay systems.

MSC:
93B18 Linearizations
93C10 Nonlinear systems in control theory
93B07 Observability
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Aggoune W., Bouteayeb, M., Darouach M.: Observers design for a class of nonlinear systems with time-varying delay. Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
[2] Antoniades C., Christofides D.: Robust control of nonlinear time-delay systems. Internat. J. Math. Comp. Sci. 9 (1999), 4, 811-837 · Zbl 0952.93042
[3] Bocharov G. A., Rihan F. A.: Numerical modelling in biosciences using delay differential equations. J. Comput. Appl. Math. 125 (2000), 183-199 · Zbl 0969.65124 · doi:10.1016/S0377-0427(00)00468-4
[4] Conte G., Perdon A. M.: The disturbance decoupling problem for systems over a ring. SIAM J. Control Optim. 33 (1995), 3, 750-764 · Zbl 0831.93011 · doi:10.1137/S0363012992235638
[5] Fliess M., Mounier H.: Controllability and observability of linear delay systems: an algebraic approach. ESIAM: Control, Optimization & Calculus of Variations 3 (1998), 301-314 · Zbl 0908.93013 · doi:10.1051/cocv:1998111 · www.edpsciences.org · eudml:90525
[6] Germani A., Manes, C., Pepe P.: Linearization of input-output mapping for nonlinear delay systems via static state feedback. Symposium on Modeling Analysis & Sim., Lille 1997, pp. 599-602
[7] Germani A., Manes, C., Pepe P.: Local asymptotic stability for nonlinear state feedback delay systems. Proc. 6th IEEE Mediteranean Conference on Control Systems, Alghero 1998 · Zbl 1249.93146 · www.kybernetika.cz · eudml:33467
[8] Hale J.: Theory of Functional Differential Equations. Springer-Verlag, Berlin 1977 · Zbl 1092.34500
[9] Hale J., Verduyn S. M.: Introduction to Functional Differential Equations. Springer-Verlag, Berlin 1993 · Zbl 0787.34002
[10] He J.-B., Wang Q.-G., Lee T.-H.: PI/PID controller tuning via LQR approach. Chem. Engrg. Sci. 55 (2000), 2429-2439 · doi:10.1016/S0009-2509(99)00512-6
[11] Kolmanovskii V. B., Nosov V. R.: Stability of Functional Differential Equations. Academic Press, London 1986 · Zbl 0593.34070
[12] Kolmanovskii V. B., Richard J. P., Tchangani A. Ph.: Some model transformations for the stability study of linear systems with delay. Preprints of the 1st IFAC Internat. Workshop on Linear Time-Delay Systems (J. M. Dion, L. Dugard, and M. Fliess, Lag 1998, pp. 75-80
[13] Krener A., Isidori A.: Linearization by output injection and nonlinear observers. Systems Control Lett. 3 (1983), 47-52 · Zbl 0524.93030 · doi:10.1016/0167-6911(83)90037-3
[14] Krener A., Respondek W.: Nonlinear observers with linearizable error dynamics. SIAM J. Control Optim. 23 (1985), 2, 197-216 · Zbl 0569.93035 · doi:10.1137/0323016
[15] Lee E. B., Olbrot A.: Observability and related structural results for linear hereditary systems. Internat. J. Control 34 (1981), 6, 1061-1078 · Zbl 0531.93015 · doi:10.1080/00207178108922582
[16] Lee Y., Lee, J., Park S.: PID controller tuning for integrating and unstable PI processes with time delay. Chem. Engrg. Sci. 55 (2000), 3481-3493 · doi:10.1016/S0009-2509(00)00005-1
[17] Malek-Zavarei M., Jamshidi M.: Time-Delay Systems. Analysis, Optimization and Applications. (North Holland Systems and Control Series 9.) Elsevier, New York 1987 · Zbl 0658.93001
[18] Márquez-Martínez L. A., Moog C. H.: New results on the analysis and control of nonlinear time-delay systems. Proc. 38th IEEE Conference on Decision and Control, Phoenix 1999
[19] Márquez-Martínez L. A., Moog C. H.: Accessibility and Feedback Linearization of Nonlinear Time-Delay Systems. Technical Report, IRCCyN 2000
[20] Márquez-Martínez L. A., Moog C. H.: Accessibility of nonlinear time-delay systems. Proc. 40th IEEE Conference on Decision and Control 2001
[21] Moog C. H., Castro-Linares R., Velasco-Villa, M., Márquez-Martínez L. A.: Disturbance decoupling for time-delay nonlinear systems. IEEE Trans. Automat. Control 48 (2000), 2, 305-309 · Zbl 0972.93044 · doi:10.1109/9.839954
[22] Picard P.: Sur l’observabilité et la commande des systèmes linéaires à retards modelisés sur un anneau. Ph.D. Thesis. Université de Nantes 1996
[23] Plestan F.: Linéarisation par injection d’entrée-sortie généralisée et synthèse d’observateurs. Ph.D. Thesis. Université de Nantes / Ecole Centrale de Nantes 1995
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.