zbMATH — the first resource for mathematics

Receding-horizon control of constrained uncertain linear systems with disturbances. (English) Zbl 1265.93107
Summary: The paper addresses receding-horizon (predictive) control for polytopic discrete-time systems subject to input/state constraints and unknown but bounded disturbances. The objective is to optimize nominal performance while guaranteeing robust stability and constraint satisfaction. The latter goal is achieved by exploiting robust invariant sets under linear and nonlinear control laws. Tradeoffs between maximizing the initial feasibility region and guaranteeing ultimate boundedness in the smallest invariant region are investigated.

93B51 Design techniques (robust design, computer-aided design, etc.)
93C55 Discrete-time control/observation systems
93C05 Linear systems in control theory
Full Text: Link
[1] Badgwell T. A.: Robust model predictive control. Internat. J. Control 68 (1997), 797-818 · Zbl 0889.93025 · doi:10.1080/002071797223343
[2] Barmisch R. R.: Necessary and sufficient conditions for quadratic stabilizability of an uncertain system. J. Optim. Theory Appl. 46 (1985), 399-408 · Zbl 0549.93045 · doi:10.1007/BF00939145
[3] Bemporad A., Morari M.: Robust model predictive control: a survey. Robustness in Identification and Control (A. Garulli, A. Tesi and A. Vicino, Lecture Notes in Control and Information Sciences 245), Springer-Verlag, Berlin 1999, pp. 207-226 · Zbl 0979.93518
[4] Blanchini F.: Ultimate boundedness control for uncertain discrete-time systems via set-induced Lyapunov function. IEEE Trans. Automat. Control 39 (1994), 428-433 · Zbl 0800.93754 · doi:10.1109/9.272351
[5] Blanchini F.: Set invariance in control. Automatica 35 (1999), 1747-1768 · Zbl 0935.93005 · doi:10.1016/S0005-1098(99)00113-2
[6] Casavola A., Giannelli, M., Mosca E.: Min-max predictive control strategies for input-saturated polytopic uncertain systems. Automatica 36 (2000), 125-133 · Zbl 0939.93506 · doi:10.1016/S0005-1098(99)00112-0
[7] Chisci L., Zappa G.: Robustifying a predictive controller against persistent disturbances. Proc. European Control Conference’99 (CD ROM), Karlsruhe 1999 · Zbl 0942.49027
[8] Geromel J. C., Peres P. L. D., Bernussou J.: On a convex parameter space method for linear control design of uncertain systems. SIAM J. Control Optim. 29 (1991), 381-402 · Zbl 0741.93020 · doi:10.1137/0329021
[9] Gilbert E. G., Tan K. Tin: Linear systems with state and control constraints: the theory and application of maximal output admissible sets. IEEE Trans. Automat. Control 36 (1991), 1008-1021 · Zbl 0754.93030 · doi:10.1109/9.83532
[10] Gurvits L.: Stability of discrete linear inclusion. Linear Algebra Appl. 231 (1995), 47-85 · Zbl 0845.68067 · doi:10.1016/0024-3795(95)90006-3
[11] Keerthi S. S., Gilbert E. G.: Computation of minimum-time feedback control laws for discrete-time systems with state-control constraints. IEEE Trans. Automat. Control 32 (1987), 432-435 · Zbl 0611.93023 · doi:10.1109/TAC.1987.1104625
[12] Keerthi S. S., Gilbert E. G.: Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems: stability and moving-horizon approximations. J. Optim. Theory Appl. 57 (1988), 265-293 · Zbl 0622.93044 · doi:10.1007/BF00938540
[13] Kolmanovsky I., Gilbert E. G.: Maximal output admissible sets for discrete-time systems with disturbance inputs. Proc. 1995 Amer. Control Conference, Seattle 1995, pp. 1995-1999
[14] Kothare M. V., Balakrishnan, V., Morari M.: Robust constrained model predictive control using linear matrix inequalities. Automatica 32 (1996), 1361-1379 · Zbl 0897.93023 · doi:10.1016/0005-1098(96)00063-5
[15] Kouvaritakis B., Rossiter J. A., Schuurmans J.: Efficient robust predictive control. IEEE Trans. Automat. Control 4 (2000), 1545-1549 · Zbl 0988.93022 · doi:10.1109/9.871769
[16] Lee J. H., Yu Z.: Worst case formulations of model predictive control for systems with bounded parameters. Automatica 33 (1997), 763-781 · Zbl 0878.93025 · doi:10.1016/S0005-1098(96)00255-5
[17] Rao C., Rawlings J. B., Wright S.: Application of interior point methods to model predictive control. J. Optim. Theory Appl. 99 (1998), 723-757 · Zbl 0973.90092 · doi:10.1023/A:1021711402723
[18] Rossiter J. A., Kouvaritakis, B., Rice M. J.: A numerically robust state-space approach to stable predictive control strategies. Automatica 34 (1998), 65-73 · Zbl 0913.93022 · doi:10.1016/S0005-1098(97)00171-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.