×

zbMATH — the first resource for mathematics

Optimal decentralized control design with disturbance decoupling. (English) Zbl 1265.93110
Summary: In this paper we present an input-output point of view for the problem of closed loop norm minimization of stable plants when a decentralized structure and a disturbance decoupling property are imposed on the controller. We show that this problem is convex and present approaches to its solution in the optimal \(\ell _1\) sense in the nontrivial case which is when the block off-diagonal terms of the plant have more columns than rows.
MSC:
93B51 Design techniques (robust design, computer-aided design, etc.)
93C73 Perturbations in control/observation systems
Software:
QDES; GMO
PDF BibTeX XML Cite
Full Text: Link
References:
[1] Boyd S. P., Barratt C. H.: Linear Controller Design: Limits of Performance. Prentice Hall, Englewood Cliffs, N. J. 1991 · Zbl 0748.93003
[2] Conway J. B.: A Course in Functional Analysis. Springer-Verlag, New York 1990 · Zbl 0706.46003
[3] Cuhna N. O. Da, Polak E.: Constrained minimization under vector valued criteria in finite dimensional spaces. J. Math. Anal. Appl. 19 (1967), 103-124 · Zbl 0154.44801
[4] Francis B. A.: A Course in \({H}_\infty \) Control Theory. (Lecture Notes in Control and Information Sciences 88.) Springer-Verlag, New York 1987 · Zbl 0624.93003
[5] Dahleh M. A., Diaz-Bobillo I. J.: Control of Uncertain Systems: A Linear Programming Approach. Prentice Hall, Englewood Cliffs, N. J. 1995 · Zbl 0838.93007
[6] Gundes A. N., Desoer C. A.: Algebraic Theory of Linear Feedback Systems with Full and Decentralized Compensators. Springer-Verlag, Heidelberg 1990 · Zbl 0697.93044
[7] Goodwin G. C., Seron M. M., Salgado M. E.: \({\mathcal {H}}_2\) design of decentralized controllers. Proc. American Control Conference, San Diego 1999
[8] Khammash M.: Solution of the \(\ell _1\) optimal control problem without zero interpolation. Proc. Control Decision Conference, Kobe 1996; IEEE Trans. Automat. Control, to appear
[9] Kučera V.: Discrete Linear Control. Wiley, Chichester 1979 · Zbl 0762.93060
[10] Linnemann A., Wang Q.: Block decoupling with stability by unity output feedback-solution and performance limitations. Automatica 29 (1993), 735-744 · Zbl 0771.93072
[11] Salapaka M. V., Khammash M., Dahleh M.: Solution of MIMO \({\mathcal {H}}_2/\ell _1\) problem without zero interpolation. Proc. Control Decision Conference, San Diego 1997 · Zbl 0935.93028
[12] Ünyelio\?lu K. A., Özgüner U.: \({\mathcal {H}}_\infty \) sensitivity minimization using decentralized feedback: 2-input 2-output systems. Systems Control Lett. (1994), 99-109 · Zbl 0792.93030
[13] Qi X., Khammash M. H., Salapaka M. V.: Optimal controller synthesis with multiple objectives. Proc. 2001 American Control Conference, Arlington 2001, pp. 2730-2735
[14] Qi X., Khammash M. H., Salapaka M. V.: A Matlab package for multiobjective control synthesis. IEEE Conference on Decision and Control 2001, to appear
[15] Quek C. K., Loh A. P.: Robust decoupling of discrete systems using \(\ell _1\) optimization. IEEE Trans. Automat. Control 42 (1997), 549-553 · Zbl 0872.93030
[16] Woude J. W. van der: Almost noninteracting control by measurement feedback. Systems Control Lett. 9 (1987), 7-16 · Zbl 0623.93028
[17] Youla D. C., Jabr H. A., Bongiorno J. J.: Modern Wiener-Hopf design of optimal controllers. Part 2: The multivariable case. IEEE Trans. Automat. Control AC-21 (1976), 319-338 · Zbl 0339.93035
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.